SOLKAV Alternative Energie Systeme GmbH

Solar absorber & heat pump technology for indoor and outdoor swimming pools and hotels Ice rinks For sale and rent **SportSolar** Integration of solar absorbers into pool-side walkways, sports flooring, tennis courts

Page 1

Solar absorber & heat pump technology for outdoor and indoor swimming pools and hotels

Solkav Alternative Energie Systeme GmbH • T +43 (0) 2745 830 28-0 • Fax +43 (0) 2745 830 28-43 • office@solkav.co.at • www.solkav.co.at

Key data:

- Located at Pyhra near St. Pölten, Austria
- Operating Europe-wide with a focus on A,D,CH, Benelux, CEE (Bulgaria, Poland), Spain
- You can communicate with us in german; english; spanish, serbo-croatian; polish; russian; albanian
- 10,000 systems installed, including 150 large plants
- 35 employees
- Owned by: private investors and funds

Our mission:

Solar absorber and heat pump technology

- For home and commercial applications
- Rapid payback (even without subsidies)
- Reliable technology

(Bitzer compressors; alva laval heat changers; Grundfos pumps; Siemens controller; etc.)

 For many years of continuous service

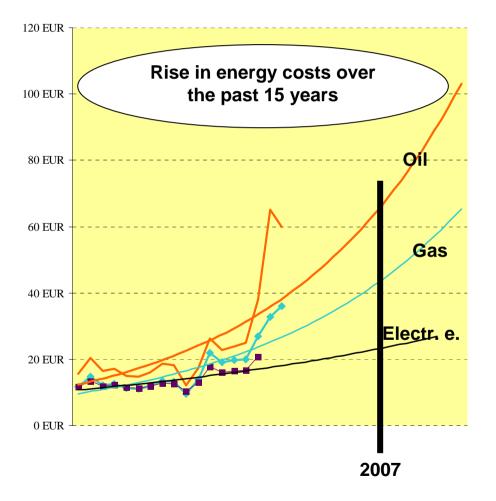
SOLKAV We about us

Our vision:

Innovation is the source of any further development

- 1982: the first solar absorber in Europe (Wilhemsburg; Austria)
- 1985: the first ice rink employing absorber technology
- 1994: the first floor-integrated solar absorber (SportSolar)
- 2002: heat pump system combined with solar absorber technology
- 2004: the first full-scale solution for heating and air conditioning using solar absorber technology (Sofia)
- 2007: the first gas motor powered heat pump solution

Patents:


Our company holds various patents

- SPORT SOLAR:
 - Integrated of the absorber a surface (as terrace; a pool-side walkway or as sports flooring)
- Absorber-Heat pump combinations:
 - Management of the permanent changing incoming absorber temperatures and the managed heat capacity
- Twinabsorber technique
 - Double circle absorber, which make two applications at the same time
- GAS Engine for a heat pump :
 - The usage of a gas engine for the heat pump in combination with solar (applied)

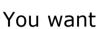
Development of energy costs

for outdoor and indoor pools and hotels

- On average, energy costs rose
 - by an annual 4.5% up to 2004;
 - by 2007, the annual average increase over the past 15 years has risen to 8.0%
- The price of natural gas, which is often of critical relevance for swimming pools,
 - has soared "OPEC style" due to Russia's rigorous pricing policy
- The price of **electrical energy** has risen over the long term
 - by 4%,
 - and thus at about half the rate of fossil fuels

Energy costs per year

for outdoor and indoor swimming pools and hotels


- To heat one m² of your outdoor swimming pool to Ø + 23° - 24° during the season you require about 800 kWh of fossil energy at a cost of EUR 48 per m²*
- To heat one m² of your indoor swimming pool you require about 1,500 kWh per year of fossil energy at a cost of EUR 90 per m² *
- For one m³ of hot water about 35 kWh or EUR 2.1 per m³ *
- Space Heating including heat recovery costs you about 250 kWh per m² or
 - EUR 15 per m²

* (e.g.: EUR 0.05 per kWh of gas at 85% energy efficiency or EUR 0.06 per KWh of district heat)

- For an outdoor swimming pool with
 - 1,000 m² pool area and
 - 2,000 m³ hot water
 - Your energy costs amount to:
 - ♦ EUR 48,000 for the pool > (90%)
 - ♦ EUR 4,200 for the hot water
- For an average indoor swimming pool with
 - 500 m² pool area and
 - 6,000 m³ hot water
 - 1,200 m² floor area
 - Your energy costs amount to
 - ♦ EUR 45,000 for the pool> (60%)
 - ♦ EUR 12,600 for hot water
 - ♦ EUR 18,000 for space heating

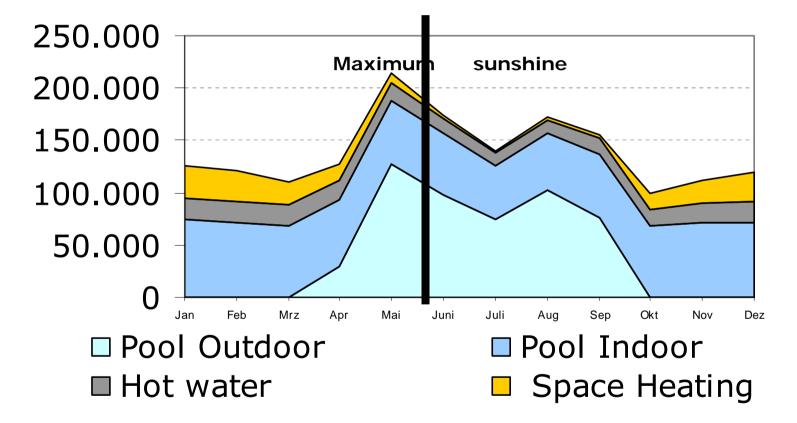
SOLKAV In summer and in winter

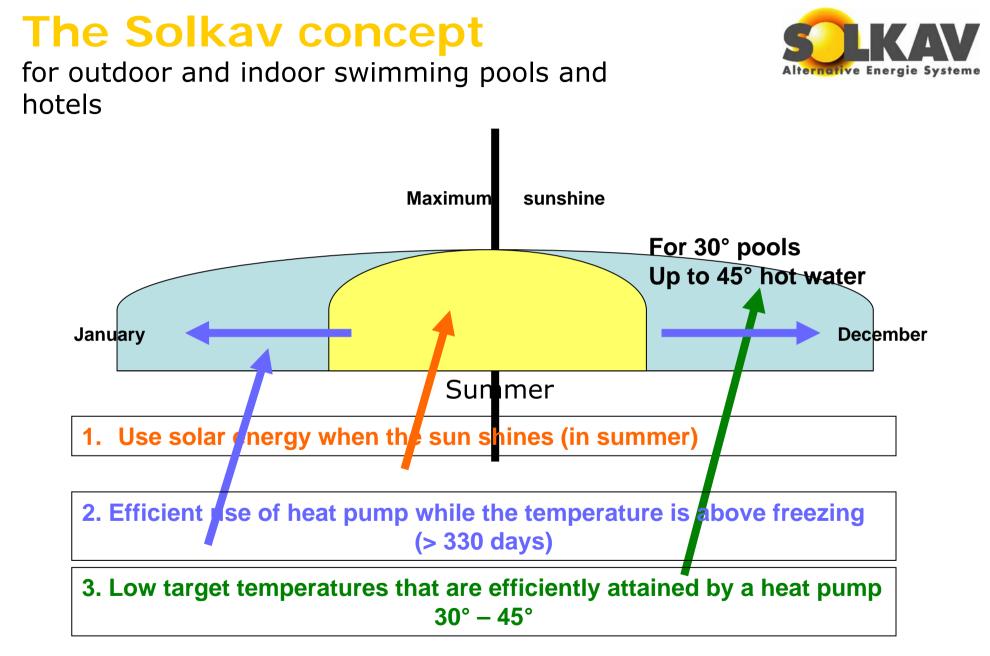
- warmer water in your outdoor or indoor swimming pool
- combined domestic hot water preparation and/or space heating
- combined air-conditioning
- to operate a (mobile) ice rink at low cost in winter
- to do all this on easy terms

Solkav offers you a variety of product solutions

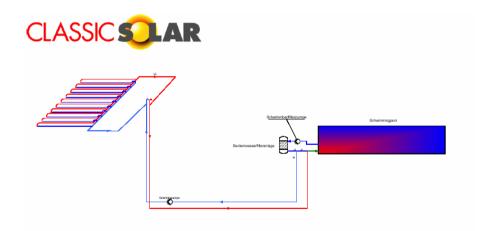
- based on solar technology components
- if desired, in combination with heat pumps
- that use free solar energy for highly cost-efficient operation

Solkav


An investment that pays off

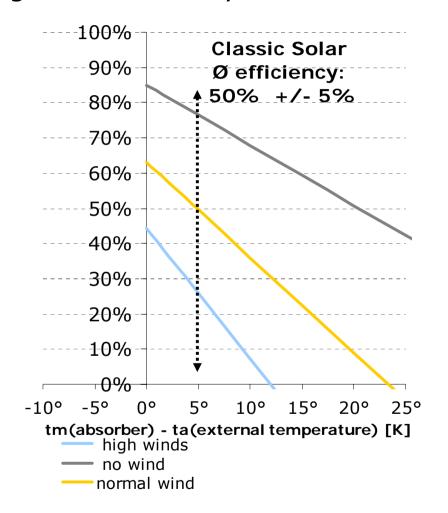

Energy cost distribution

for outdoor and indoor swimming pools and hotels



Pools require heating either throughout the year or primarily in summer (when the sun shines or temperatures are at least high)

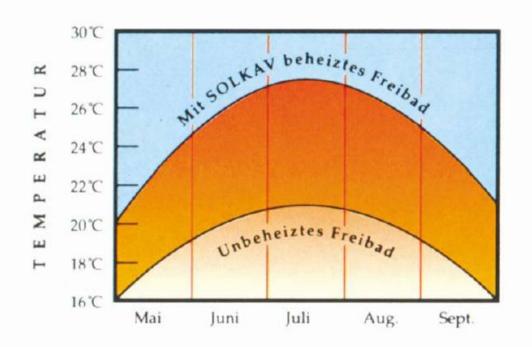
Operating principles



Pool water is circulated **directly through a roof-mounted system**

- While the water is circulating it is heated by solar energy – the optimal temperature delta being approx. 3°C
- With large volumes/pipe diameters, the solar energy gained is about equivalent to that captured with glazed collectors
- When the sun does not shine or the pool water is sufficiently warm, the system shuts down automatically

Classic solar absorber Degree of efficiency



The Classic solar absorber is an **uncovered tube system** and therefore

- less expensive than glazed systems
- Because of the low circulation temperature in pool heating applications (about +5° above external temperature), the impact of windy conditions is within a tolerable range
- With an efficiency of about 85% in ideal conditions and an efficiency of about 50% +/-5% in average operation a true high performer

Classic Solarabsorber Results

With 100 % absorber area relativ to pool area

	Wind	
low	normal	high
- 1,5°C	-2°C	- 3°C
+ 5°C	+ 4°C	+ 3°C
60	-	80
	+ 5°C - 1,5°C + 5°C	low normal + 5°C + 4°C - 1,5°C - 2°C + 5°C + 4°C

about 50% effiency from solar radiation

and this without energy costs

Long-term durability

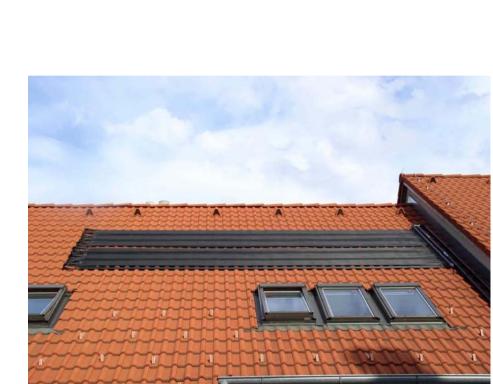
UV light. EPDM is 100% UV resistant. Unlike many types of plastics, it does not contain any plasticisers and therefore is not at risk of disintegrating in the course of time

Chlorine. Solkav uses high-quality EDPM (rubber) resistant in accordance with the German standard DIN 4060. (You may even use some extra chlorine. When using saline systems, a titanium intermediate heat exchanger is required)

Hail. Rubber is flexible and the Solkav absorber is especially thick-walled and sturdy.

Page 14

Martens, ravens & Co.


Martens, ravens >> no problem

• You can easily repair the solar system in a matter of just 10 minutes yourself

or

- You can protect your system by means of a simple wire mesh which, if necessary, can also be installed later on
- PS: only about one in 200 systems is actually affected by problems of this kind

Installation variants

Easy to install on any roof

- \diamond flat roof
- ♦ tiled roof
- ♦ Eternit (fibres and cement)
- ♦ seam roof

of any size (length x width)

Fastening:

- \diamond by bonding agent or
- ♦ by means of aluminium rails

Load on roof: 6 kg per m² + piping and fasteners on average not exceeding 15kg

Classic solar absorber Cooling

Your solar system also comes with a **cooling feature**.

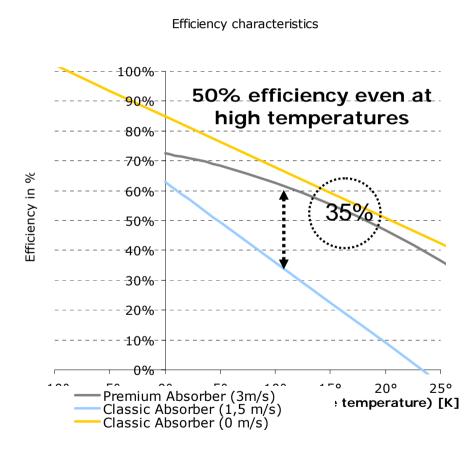
- If desired, the pool can be cooled down a little during the night
- This feature is of particular interest for swimming ponds as it significantly reduces the growth of algae and bacteria that may occur in extremely hot summers.
- PS: Combined with a heat pump, a solar system may even be operated as an ice rink in winter

Meeting high demands

... the Lexan-coated absorber

Premium Solar

whenever


- the bathing season is to be extended for as long as possible
- high marten-proofness is desired
- the roof is exposed to high winds
- an especially elegant solution is preferred
- for indoor swimming pools with high water temperatures

Premium Solarkollektor

Page 18

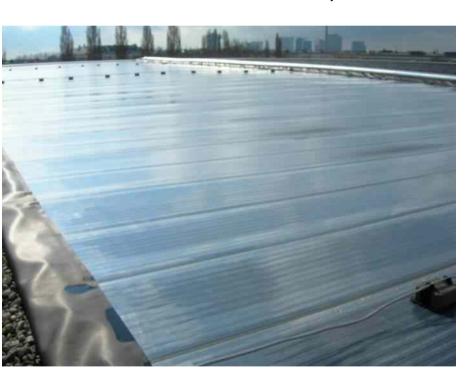
The wind and freezing-resistant solution

... The Lexan-coated absorber

- Attains an efficiency of about 50% +/-5% even
 - in high winds (3 m/s)
 - and at a temperature delta of 15°C relative to the external temperature
- It is thus especially suitable for demanding applications such as
 - indoor swimming pools
 - or combined with glass domes (for a longer season)
- Filled with anti-freezing agent, it may even be operated all year round >>
 - about 10 months of solar pool heating

Premium solar collector Easy to install

Can be installed on any roof


Unlike glazed collectors

- independent of irradiation angle as absorber-based
- Therefore no complex roof structure needed
- No structural problems (total load on roof about 20 kg)

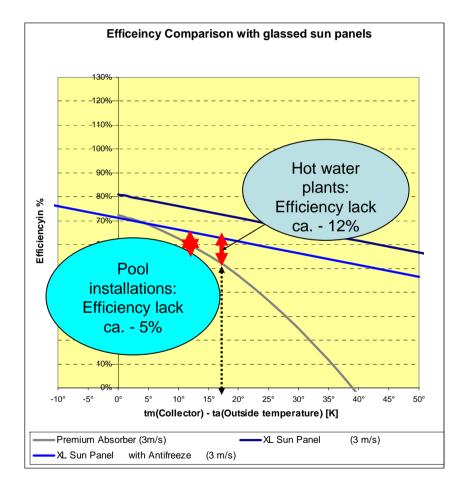
Premium solar collector

as solar optimiser

Can be installed on any roof

Perfect for large systems

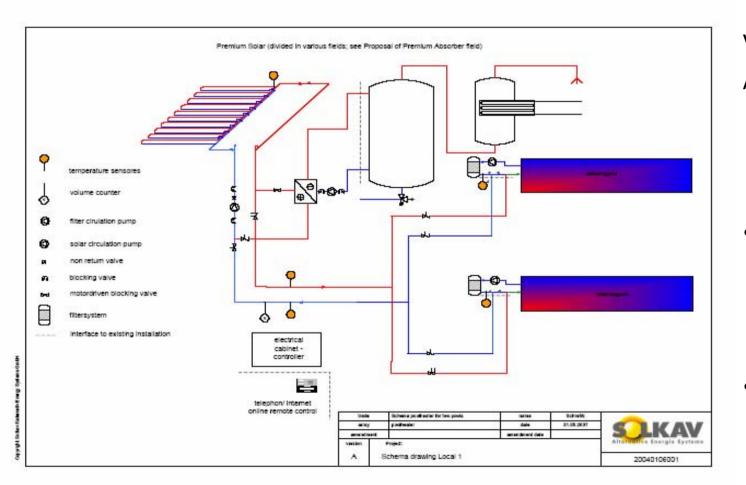
- Compact installation possible even on large areas
- The larger the area, the better the premium collector can demonstrate its good cost/benefit performance


Can also be combined with the Classic absorber

This enables you to combine the advantages of ClassicSolar (using air circulation) with those of PremiumSolar (particularly good solar values)

Premium solar collector

for hot water / in combination with pool water


Perfectly applicable for hot water installations:

- The Premium collector
 - Needs no Antifreeze filling
 - Got run with low temperatures (40° - 50
 - Needs no or less heat changers in between
- And is therefore more or less equal in comparison to glassed sun panels.
- But with cost of: -40%

Premium solar collector

Alternative Energie Systeme

for hot water / in combination with pool water

Very Efficient At the temperature level up to 50° +/-5°

- Continuously operated equal in terms of kWh output in comparision to glassed sun panels
- At Cost of -40%

The space-saving alternative

Solar absorber can be installed as:

- a terrace
- a pool-side walkway
- or as sports flooring
- It is always slip-proof and safe

European patent

All colours are possible (very light shades are not recommended, though)

Installation on the ground

Once the ground has been prepared, the classic **EPDM absorber mats** can be bonded to the flooring. For this job, the same bonding agent is used that is used for fixing absorber mats to the roof.

When the bonding agent has cured, the mats can be filled with EPDM pellets of the desired colour. Once this job has been completed, the coating has to rest for one day before the finish can be applied.

SportSolar systems can be made to fit any design and perform several functions (solar system, playing court, ice rink, ...)

SportSolar designed to meet your needs

Maspalomas / Gran Canaria 2006

- The piping ducts are constructed along the edge and covered by plastic grids.
- The efficiency of flooring is similarly high as that of roof-mounted systems. The floor structure provides additional protection against the wind.
- Any number of stays can be integrated into the flooring.

Blue, blue-grey, red, red-black, anthracite, volcano rock brown – whatever you desire

SportSolar – maxi version

Burbach/NRW 2003

Neulengbach/Wien 2001

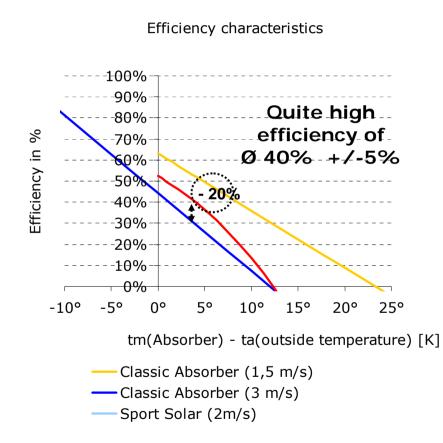
... so there's nothing to stop some fun in the pool. SportSolar systems have anti-slip surfaces, which reduces the risk of injury. The walkway around the pool always has a comfortable temperature.

SportSolar as sports flooring

Also suitable for use as sports flooring

- similar to Tartan flooring
- for all ball games
 - ♦ tennis
 - ♦ basketball
 - ♦ handball
 - ♦ badminton
 - ♦ etc.

SPORT solar absorber SportSolar with ClassicClay properties


Also suitable for tennis courts

- Characteristics like a clay court
- Easy on joints and muscles
- Requires only minimal maintenance
- Water permeable and insensitive to weather conditions
- Always the same characteristics, regardless of the season
- Attractive appearance (brickred)
- Long service life

... tennis of clay-court quality

Solar absorber without extra space needs

Quite efficient in actual operation

- Hardly inferior to standard absorber
- About 40% +/-5% efficiency
- Hardy affected by windy conditions due to in-floor installation

At wind speeds of 3m/sec or more even **superior** to roof-mounted absorbers !

Solar absorber + heat pump

Page 30

Thermal reliability & energy conservation

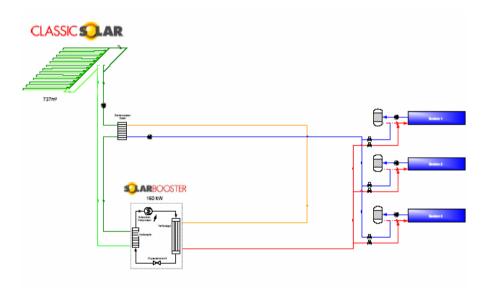
You want 100% thermal reliability while minimising your energy costs?

To achieve this, we combine the absorber system with a heat pump.

Such a system normally operates with solar energy and switches to the heat pump only in poor weather conditions.

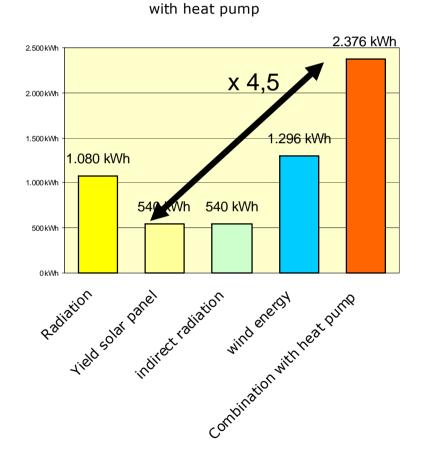
⇒ Energy costs amount to only 15% of a standard oil/gas heating system or 50% of a standard air-source heat pump.

The Solkav SolarBooster concept: even an outdoor spa bath can be heated by a solar-assisted system


Solar absorber + heat pump

Page 31

Thermal reliability & energy conservation



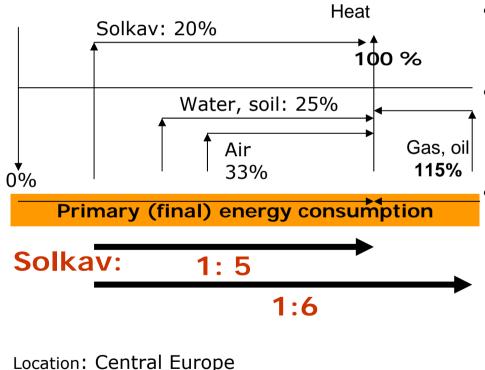
Perfect for indoor swimming pools

The integrated solution

- When the sun shines, the system operates with solar energy
- When there is no sunshine or by night, the system operates
 - as heat-pump based system that
 - extracts primary energy from the air.

Heat yield of a absorber in combination

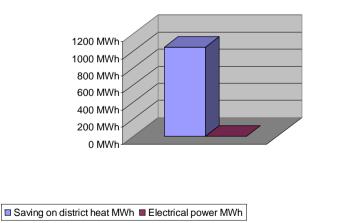
In combination with a heat pump


- Is the solar absorber at the same time a hugh heat changer plant,
 - which also absorbs diffuse radiation
 - And also extract heat of the air and increase the yield of the absorber in comparision to a sun panel by 4,5
- 24 hours operation
 - Also without any solar radiation
 - And during the night
- With constant kWh output,
 - Because the consumption of electrical power egalize different kWh input of the absorber.
 - As long the absorber is not covered by snow

Solar absorber + heat pump

Thermal reliability & energy conservation

Heating power superior to that of any other heat pump system as


- **solar irradiation is added** to the ambient heat (air)
- At 250 watts per m² of absorber area, the average energy yield is very high (soil: 50 – 70 watts)
 - Due to the use of brine (a mix of glycol and water) as a medium
 - the power consumption for "moving the medium" is only 25% of that needed by air-source heat pumps
 - Because of the large size of the heat exchanger surface, icing occurs only at freezing temperatures. Can be operated at outside temperaturs of down to 0°C.

Solar absorber + heat pump Thermal reliability & energy conservation

Energy conservation by public baths in Wien Donaustadt Details from Axima Gebäudetechnik GmbH (contractor operator) Donaustadt: 600 m² Twin Absorber Cost MWh District heat: System features: EUR 160 KW heat pump 46 Invest: 175 TEURO Cost MWh electr. power: 80 EUR Coeff. of performance: 05.Mai DONAUSTADT 2005/06 Jul Aug Sep Oct. Nov. Dec. Jn Feb Mar Apr May And. Total Jun 58 - 20 37 1.044 Saving on district heat MWh 182 136 107 92 85 67 115 146 157 trical power MWh 48 TEURO Saving Amortisation period 3,6 Jahre

More than 15 systems installed and in operation

Stable results with about:

- 11 months of operation; about 5500 full load hours per KW installed
- Heat electric power usage ratio of 1:5
- Conservation of caloric energy (depending on primary energy); about 1:6
- Example:
 - 160 KW installed
 - Replaces 1m kWh of district heat
 - 1 : 5.5 ratio of district heat reduction to additional power consumption
 - Annual savings of EUR 33,000
 - Investment: EUR 175,000
 - Amortisation period: 5.3 years

Solar absorber + heat pump

Variation: Combination with ice rink

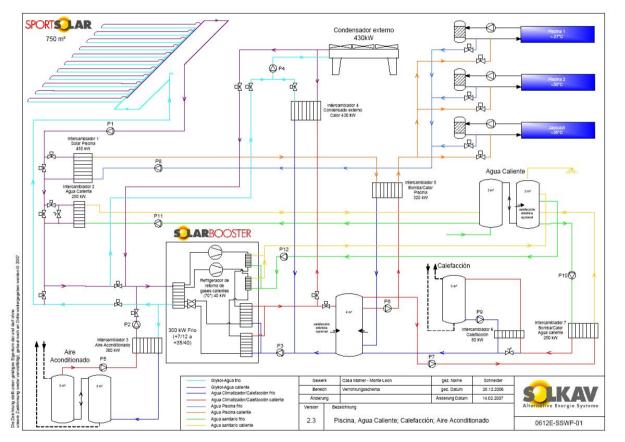
Conserving energy and having fun

The technology installed is put to dual use

 In winter, as ice rink using waste heat from the indoor swimming pool

>> therefore the energy for the ice rink is free

 In spring, summer and autumn as integrated solar+heat pump system


>> with the "usual" savings

 Can also be configured as a combined air conditioning system

Solarabsorber + heat pump

Variation: Combination with climatisation

Energieeinsparung und Performance

The installed plant and the consumed energy can be used twice:

- At the same time for climatisation and for the supply of heat
- The waste heat of the climatisation process can be used to heat a pool or to preheat shower water
- >> in this case the cost of climatisation is for free.
- Through integration of solar absorber energy the cost of the system get to be reduced further
- Usable for big climatisation consumers like
 - Hotels;

.

- shopping malls;
- office buildings

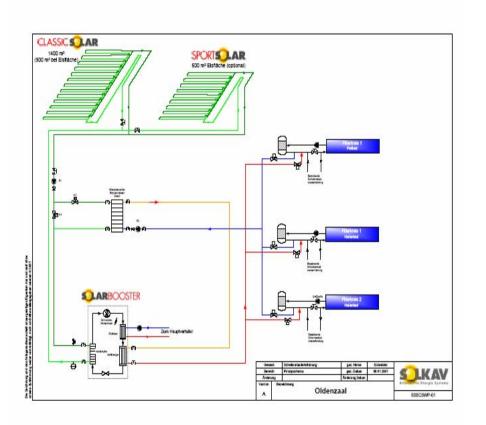
Solar absorber + heat pump gas-powered

In 2007 the Bäderland Group in Hamburg put the first gas engine driven solar absorber/heat pump system into operation:

- From 200 KW (winter) to 350 KW (summer) + 110 KW waste heat
- One reciprocating piston; NH³ with TEWI value of zero
- Expected average COP: heat gas coeff. of performance: 1:2.9
- 330 operating days per year
- Annual energy cost savings: EUR 65,000
 - Investment: EUR 350,000
 - Amortisation period: 5.3 years

SOLKAV scope of delivery Feasibility study

	ISTE	D CO	OVEI	RAG	E of l	IEAT	FING	RE(QUIR	EMF	INTS	61	.,8%
200.000	1												
180.000	-												
160.000	-										/		
140.000	-				-	_			/		_	_	
120.000	-				~~~		~						
100.000	-		1			-0-							
80.000	-												
60.000		1 - N											>
40.000	-		_								_		
					_								
20.000	-												
20.000 0	-												
	-			Heati	ng rea	uireme	ents in	kWh					
	Jan	Feb	Mar	Heati i Apr	ng req May	uireme June	e nts in July	kWh Aug	Sep	Oct	Nov	Dec	
0	Jan 48447	Feb 46570	Mar	-	May	_		1	Sep 34202	Oct 40893	Nov 46464	Dec 48519	455.49
0 Dutdoor poo <mark>l</mark>			Mar 41765	Apr	May	June	July	Aug	34202				
0 Dutdoor poo <mark>l</mark> indoor pool	48447	46570	Mar 41765	Apr 38636	May 30107	June 27145	July 25488	Aug 27255	34202	40893	46464	48519	1.029.68
0 Dutdoor poo <mark>l</mark> Indoor pool Hot water	48447 98678 26063	46570 94388 26063	Mar 41765 90097	Apr 38636 85807 26063	May 30107 81517 26063	June 27145 77226 26063	July 25488 68646 26063	Aug 27255 72936 26063	34202 81517	40893 90097 26063	46464 94388 26063	48519 94388 26063	1.029.68 312.75
0 Dutdoor pool Indoor pool Hot water T/requirement	48447 98678 26063	46570 94388 26063 167020	Mar 41765 90097 26063 157926	Apr 38636 85807 26063 150506	May 30107 81517 26063 137687	June 27145 77226 26063 130434	July 25488 68646 26063 120196	Aug 27255 72936 26063 126254	34202 81517 26063 141782	40893 90097 26063 157054	46464 94388 26063 166915	48519 94388 26063 168970	1.029.68 312.75
0 Outdoor pool Indoor pool Hot water T/requirement	48447 98678 26063 173188	46570 94388 26063 167020 AGE	Mar 41765 90097 26063 157926	Apr 38636 85807 26063 150506	May 30107 81517 26063 137687 G RF	June 27145 77226 26063 130434 QUIR	July 25488 68646 26063 120196	Aug 27255 72936 26063 126254 NTS b	34202 81517 26063 141782	40893 90097 26063 157054 KAV i	46464 94388 26063 166915	48519 94388 26063 168970	455.49 1.029.68 312.75 1.797.93


in kWh	Heating requirement	SOLKAV	Saving
Effective energy	1.111.970	221.965	890.005
		COP:	5,0
PRIMARY	Y ENERGY BALANC	E FOR TOTAL SY	(STEM
in kWh	Convent. System	SOLKAV	Saving
Energy consumption	1.235.522	221.965	1.013.557
residual conv. portion	762.180	762.180	0
TOTAL	1.997.702	984.145	1.013.557
		Saving	51%
in EUR			

- Analysis of ACTUAL energy consumption
 - by user groups and temperature levels
 - over the year and during the day
- Simulation of cost savings based on
 - local solar/temperature data
 - current and projected energy costs
- Proposed optimised solar/heat pump combination
 - Pure solar system?
 - Combination with heat pump?
 - Special solutions such as ICE or gas-powered

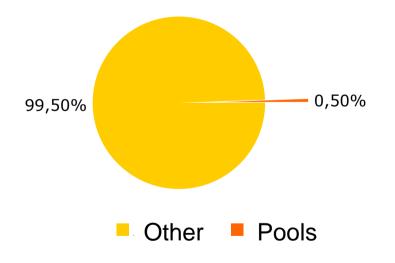
SOLKAV scope of delivery

Ready to use: from plan to completion

- Solkav provides the engineering design
 - as general contractor
 - or in co-operation with your engineering consultant
- Solkav assembles the entire system
 - the absorber system
 - the hydraulic system
 - the electrical and control systems
- delivers and fine-tunes you system

SOLKAV scope of delivery

After-sales service



- SOLKAV provides on-site training to your team, enabling them
 - to operate the system independently and in the most efficient manner
- SOLKAV
 - offers remote maintenance on-line at any time
 - provides on-site fault-clearing services and/or instructs its local contractors
- SOLKAV will be pleased to provide
 - spring and autumn maintenance
 - full-scale maintenance including any repair work desired

SOLKAV references

Reduction of CO₂ emissions

CO₂ share of total Co₂ emissions

Existing swimming pools:

- Outdoor and indoor pools:

Austria: 1,500 Germany: 8,500

 Private pools and hotel indoor pools: Austria: 60,000 Germany: 500,000

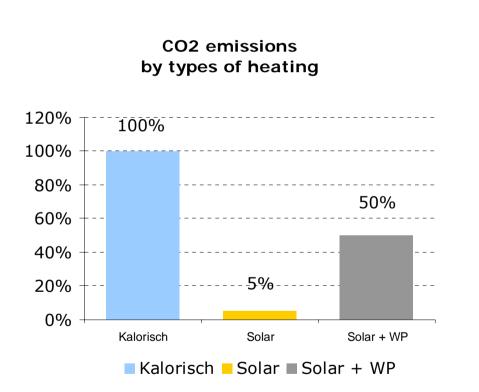
To heat these pools; and the infrastructure such as hot water and space heating one requires (approximately):

Heat:

1.5m MWh (Austria),
 22.0m MWh (Germany)

C0₂:

- 300,000 tons (Austria)
- 1,500,000 tons (Germany)


Or caloric power stations of 500 MW each:

- 1 power station (Austria)
- 12 power stations (Germany)

SOLKAV references Reduction of CO₂ emissions

Page 42

The use of

solar heating (outdoor pools) and solar+heat pump heating (indoor pools) results in

- 95% less CO2 with solar heating
- 50% less CO2 with solar + heat pump heating

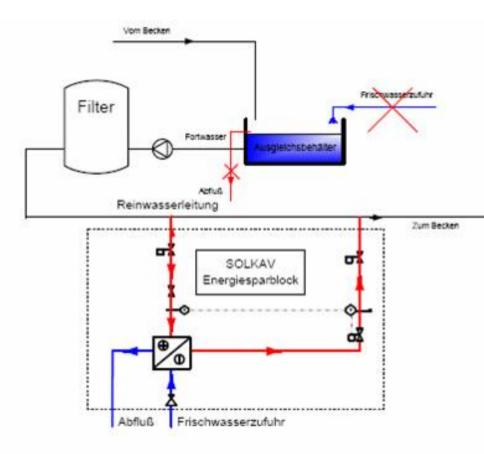
Universal use of the technology (and reduction of the fossil portion to only supplementary heating) will reduce CO_2 emissions as follows:


- 75% -80% of CO2 emissions related to swimming pools
 That is:
- 240,000 tons (Austria)
- 1,200,000 tons (Germany)

Or in caloric power stations of 500 MW each:

- 1 power station (Austria)
- 8 power stations (Germany)

SOLKAV Anything else? Ice Rinks for Rent


We rent mobil Ice rinks

- For each individual lay out
- Turn key incl. all Acessoirs (chiller technology; barriers; skating equipement; Ice resurfacing tools; etc.)
- Fast to built and to extract
- In combined projects with heat pump use; just as a winter additional
- * Being a manufacturer you will find a lot more of our equipment installed as we rent on our own-

SOLKAV Anything else?

Fresh water package

An average indoor pool area needs

- 20 m³ fresh water a day
- Need therefore 18° x 1,163 x 0,05 EUR/cost per kWh heat x 7.200 m³
 - = ca. EUR 7.500 HEAT
- 7.200 m³ x 4 EUR per m³ (Fresh water + sewage fees)
 - = ca. EUR 28.800 cost of fresh water

With the Solkav Fresh water package

- You pick up the heat of the sewage water and give it the fresh water: 95% savings of heat
- Rreduce the consumption of fresh water 30% – 50%

The relatively small investment pay back in approx. 3 years.

Solar absorber + heat pump

Pool. Hot Water

Estimated Cost and savings

Estimated cost for outdoor pools, installed; in EUR excl. VAT

Pool size	Energy need	Classi	c Solar	Premiu	umSolar	Spor	tsolar	Combined abso	rber/heat pump
150 m ²	120.000 kWh	120 m ²	€18.000	113 m ²	€39.375	150 m²	€45.000	150 m² / 50 KW	€70.000
		150 m²	€ 22.500	150 m²	€48.000	0.4.0			
312 m ²	249.600 kWh	312 m ²	€ 37,440	234 m ²	€70.200	312 m²	€84.240	250 m²/ 80 KW	€100.000
450 m²	360.000 kWh					450 m²	€112.500	400 m² / 120 KW	€120.000
600 m ²	480.000 kWh	450 m ²	€49.500	338 m ²	€97.875	600 m²	€138.000	450 m² / 150 KW	€140.000
850 m ²	680.000 kWh	600 m ²	€63.000	450 m²	€126.000	850 m²	€178.500	600 m² / 200 KW	€170.000
		850 m ²	€85.000	638 m²	€172.125			000 HF 7 200 KW	
1.000 m ²	800.000 kWh	1.000 m ²	€100.000	750 m²	€195.000	1.000 m ²	€200.000	800 m² / 250 KW	€200.000
1.250 m ²	1.000.000 kWh					1.250 m ²	€250.000	900 m² / 300 KW	€225.000
		1.250 m ²	€125.000	938 m²	€234.375				

* In the case of biologic swimming pools just the pool area has to be counted

Savings for indoor pools: in EUR; excl. VAT

Assumption:	EUR 0,065 per k\	Wh Oil/Gas	with 85% efficiency		Assumption:	EUR 0,100	per kWh elektrical power
Region Northern Europe: (Netherlands; Germany; Baltic	250 kWh	€16	300 kWh	€20	220 kWh	€14	583 kWh €30
Region Middle Europe: Mitteleuropa; Belgien; Nordfra	280 kWh	€18	350 kWh	€23	250 kWh	€16	667 kWh €34
Region north. South Europe: (France: Italy: North and Mid;	350 kWh	<mark>€23</mark> d Portuga	400 kWh I; Balcan Area)	€26	320 kWh	€21	1.333 kWh €68
Region South:	450 kWh	€29	550 kWh	€36	400 kWh	€26	1.667 kWh €85
Spain and Portugal: south and	d Mid; Baleares; C	Greece			· · ·		
Region southern South:	600 kWh	€39	800 kWh	€52	550 kWh	€36	2.125 kWh €108
Canary Islands - Winter bathi	ng areas						

We will be pleased to design the optimum system layout for you without engagement Solkav Alternative Energie Systeme GmbH • T +43 (0) 2745 830 28-0 • Fax +43 (0) 2745 830 28-43 • office@solkav.co.at • www.solkav.co.at Page 45

Solar absorber + heat pump Estimated Cost and savings

Lotinated Cost and Savings

Estimated cost for indoor pools; installed; in EUR excl. VAT

Pool size	Energy need	Classic	c Solar	Prer
150 m²	225.000 kWh	180 m²	€27.000	150 m²
312 m²	468.000 kWh	374 m²	€44.928	312 m²
450 m²	675.000 kWh	540 m²	€59.400	450 m²
600 m²	900.000 kWh	720 m²	€75.600	600 m²
850 m²	1.275.000 kWh	1.020 m ²	€102.000	850 m²
1.000 m ²	1.500.000 kWh	1.200 m ²	€120.000	1.000 m²
1.250 m ²	1.875.000 kWh	1.500 m ²	€150.000	1.250 m²

	、 I	
ar	Sportsolar	+ heat pump
€57.000	50 KW / 220 m ²	€113.000
106.080	100 KW / 350 m ²	€177.500
144.000	150 KW / 500 m ²	€255.000
180.000	180 KW / 650 m²	€307.500
238.000	260 KW / 1000 m ²	€450.000
260.000	320 KW / 1200 m	€555.000
312.500	400 KW / 1500 m	€675.000
		0

mp		Combined abso	rber/heat pump
3.000		50 KW / 220 m ²	€80.000
7.500		100 KW / 350 m ²	€125.000
5.000		150 KW / 500 m ²	€180.000
07.500		180 KW / 650 m ²	€210.000
50.000		260 KW / 1000 m ²	€300.000
5.000		320 KW / 1200 m ²	€375.000
75.000		400 KW / 1500 m ²	€450.000
Surch	arge	for gas engine:	40%

Pool. Hot Water

* In the case of swimming ponds; calculations are based only on the swimming ares x 3

* outdoor pool for full-year oparation; area x 3

Savings for indoor pools: in EUR; excl. VAT

0,065 EUR per kWh Oil/Gas with 85% efficiency Assumption: Assumption: 0,100 EUR per kWh elektrical power Region Northern Europe: 400 kWh 1.120 kWh 1.400 kWh €63 320 kWh €21 €26 €50 (Netherlands; Germany; Baltic see) Region Middle Europe: 380 kWh €25 480 kWh €31 1.280 kWh €58 1.600 kWh €72 Mitteleuropa; Belgien; Nordfrankeich Region north. South Europe: 450 kWh €29 600 kWh €39 1.440 kWh €65 1.800 kWh €81 (France: Italy: North and Mid; northern Spain und Portugal; Balcan Area) Region South: 550 kWh €36 750 kWh €49 1.600 kWh 2.000 kWh €77 €97 Spain and Portugal: south and Mid; Baleares; Greece Region southern South: 900 kWh €59 1.760 kWh €85 2.200 kWh 650 kWh €42 €106 Canary Islands - Winter bathing areas

€

€

€

We will be pleased to design the optimum system layout for you without engagement

Page 46

SOLKAV Solar absorber & heat pump technology Which solar type are you?

Always true:

With a SOLKAV solar/heat pump system you can cut your energy costs substantially and your investment will pay for itself in just a few years.

ClassicSolar: the easy-to-install standard system

PremiumSolar: for very windy conditions and indoor pools

SportSolar: for in-floor installation

Combined with heat pump: for full-year and round-the-clock operation

Ice and gas-powered systems as special options

SOLKAV references

of the past 5 years

- Solar absorber and heat pump systems:
 - 6 indoor swimming pools in Vienna: Donaustadt 2003; Grossfeldsiedlung 2003, Hietzing 2003, Floridsdorf 2005, Jörgerbad 2006, Favoriten 2005
 - 3 in Germany: Brüggen 2003, Gelnhausen 2004; Birkerteich 2005
 - 2 in Benelux: DeBilt (2007); Izegem (2006)
- Systems combined with ice rinks:
 - NL Haarlem (2005)
 - Polen Kolobrzeg (2006)
- Systems combined with air-conditioning:
 - Sofia (2004)
 - Maspalomas / Gran Canaria (2007)
- Large absorber systems:
 - SportSolar: A Neulengbach (2001); D– Hänigsen (2004); Burbach (2003); Gran Canaria – SunClub 82006);
 - PremiumSolar: A Wien-Floridsdorf (2005); D – Rossdorf (2003)

- Energy contractors,
 - such as AXIMA
 - and Siemens Gebäudetechnik;
 operating Solkav systems as contractors
- Large municipalities
 - such as the city of Vienna (a client for 20 years) and about 25 systems in the grid
 - Bäderland Hamburg with the first gaspowered heat pump
- Energy utilities,
 - such as AVACON (Lower Saxony) who recommend the Solkav concept to their energy customers
- Engineering consultants
 - who are familiar with Solkav products
- Partners in industry
 - Water treatment firms such as BSA
 - Makers of stainless steel pools like Berndorf

SOLKAV Solar absorber & heat pump technology A good feeling

- Environmentally friendly
 - Apart from the sun, solar absorbers do not need any extra energy input
 - Heat pump technology minimises energy consumption
- Operation of the system is easy on your pocket

Enjoy fun, sports and well-being with a clean conscience

SOLKAV Contact

Schauching 31 A-3143 Pyhra bei St. Pölten	Management Dr. Walter Kirnich	+43 (0) 650 2200 189
A 5145 I yina bei St. I olten	kirnich.walter@solkav.c	
T +43 2745 830 28-0	Eastern and southern	Austria
Fax +43 2745 830 28-43	Strampfer Wolfgang	+43 (0) 664 203 05 82
	strampfer.wolfgang@so	lkav.co.at
	Central and western	Austria, Bavaria
	Alfons Lipinski	+43 (0) 676 744 86 33
	lipinski.alfons@solkav.c	o.at
	Switzerland, Vorarlbe	erg
office@solkav.co.at	Egon Gander	+43 (0) 664 549 30 49
www.solkav.co.at	gander.egon@solkav.co	.at

SOLKAV Contact

Schauching 31 A-3143 Pyhra bei St. Pölten	Central Germany Johann Mayer +49 (0) 171 351 2600 mayer.johann@solkav.de
T +43 2745 830 28-0 Fax +43 2745 830 28-43	Northern Germany Thomas Fortenbacher +49 (0) 171 193 1973 fortenbacher.thomas@solkav.de
	Germany, North Rhine-Westfalia Alexander Henrich +49 (0) 176 20 19 2238 henrich.alexander@solkav.de
office@solkav.co.at www.solkav.de	Germany (distribution partners) Nemo-consult: Dieter Behrmann +49 (0) 172 236 0867 kontakt@nemo-consult.info

SOLKAV Ihr Kontakt

Romhof 43 - 45	Benelux	
NL-9410 AB Beilen	Nico Brouwer n.brouwer@solkav.nl	+31 (0) 610 57 00 67
Schauching 31,	Ex – YU Republics / Al	Ibania
A-3143 Pyhra bei St. Pölten	Muhamet Olomani	+43 2745 830 28-0
		+43 676 640 79 62
	olomani.muhamet@solka	av.co.at
Bul. "Dragan Tzankov" 31A	Bulgaria	
Bul. "Dragan Tzankov" 31A BU- Sofia 1113	Bulgaria Antonina Valkanova	av.co.at +359 888 491244
-	Bulgaria	
-	Bulgaria Antonina Valkanova	
BU- Sofia 1113	Bulgaria Antonina Valkanova a.valkanova@solkav.net	

c\Andrèu Llambrich 31 E - 43860 L`Ametlla de MAR (Tarragona)

Catalonien Weiland Immobilien S.L. +34 (0) 977 45 72 88 Gertrude Weiland gweiland@teleline.es

El Tablero, C/Miami 39, E-35109, Gran Canaria Canary Islands and other Spain Dr. Siegfried Fischer +34 (0) 649 23 55 24 canarias@solkav.es

Av. De Fitares; No. 25 C - Rinchoa, P 2635-454 Rio de Mouro Portugal Eurosisnergia do norte +351 (0) 966 19 3370 Carlos Campos / Caetano Baptista geral@eurosisnergia-norte.com caetano.baptista@eurosisnergia-norte.com