

KUKA Roboter GmbH

SOFTWARE

RTOS Virtual Machine
Whitepaper

Edition: 2008-03-01

1 of 19

1 KUKA RTOS VIRTUAL MACHINE OVERVIEW.. 3

1.1 SHARED MODE OPERATION .. 3
1.2 EXCLUSIVE MODE OPERATION ... 4
1.3 REAL-TIME DEVICE MANAGEMENT .. 5
1.4 VIRTUAL MACHINE FRAMEWORK... 6

1.4.1 VMF Architecture.. 7
1.4.2 Basic VMF Services (Hardware Abstraction Layer)... 8

1.5 PORTABILITY .. 9
1.6 MEMORY LAYOUT .. 10
1.7 GENERAL .. 11
1.8 VMF MANAGEMENT ANCHOR... 11

2 EXAMPLE IMPLEMENTATION: MINI RTOS .. 12
2.1 CONTENT, DIRECTORIES.. 12

2.1.1 DEFS... 12
2.1.2 MiniBsp ... 12
2.1.3 MiniRtos .. 12

2.2 BUILD THE MINI RTOS .. 13
2.3 START THE MINI RTOS .. 13
2.4 DEBUG CONSOLE.. 14

3 RTOS CONFIGURATION .. 15
4 USING THE VMF API FUNCTIONS... 16
5 BOOTING THE RTOS... 17

5.1 PRE-BOOT STEPS ... 17
5.2 FRAMEWORK INITIALIZATION, FRAMEWORK MEMORY CONTEXT MAPPING .. 17
5.3 RTOS BOOT.. 19
5.4 SHARED PROCESSOR CORE: RTOS IDLE LOOP... 19

01.03.2008 Page 2/19

1 KUKA RTOS Virtual Machine Overview

The KUKA RTOS-VM provides a light-weight real-time virtualization platform for Windows.
On top of this platform one can very easily implement own firmware or run a custom or off-the-shelf
real-time operating system.
As a result, existing real-time software can easily be adopted to run together with Windows.
When using multicore CPUs one can choose between two general operation modes.

1.1 Shared Mode Operation
Windows shall run on all CPU cores and only one CPU core shall additionally run the real-time
software. If the Windows application needs a lot of CPU power (e.g. for image processing) this will be
the appropriate operation mode even on multi-core CPUs. In shared mode operation Windows (on this
core) will usually only get CPU time when the real-time software is idle.

The following diagram illustrates the flow of control:

Windows Real-time
Tasks

Real-time
ISR

Realtime IRQ

Windows Real-time SoftwarePriority of Execution

IR
Q

Operating states of the RTOS-VM in shared mode
 Exception-handling or a higher priority interrupt becomes outstanding.
 Interrupt Service Routine optionally starts a new task and then finishes.
 From the idle-state, VxWorks transfers control to Windows operating system.

Note: When running the RTOS-VM in shared mode on multiprocessor/multicore systems this state
diagram is only applicable for one CPU core in the system (by default on the first core). All other CPU
cores will run Windows only.

01.03.2008 Page 3/19

1.2 Exclusive Mode Operation
Windows and the real-time software shall run fully independently on different CPU cores. Using this
mode will lead to much shorter interrupt and task latencies as there is no need to switch from Windows
to the real-time software.

The following diagram, illustrates the flow of control on a dual core system:

Core 1:
Windows

Core 2:
Real-time
Software

Real-time
Tasks

Real-time
ISRs

Realtime IRQ

Windows
Processes

Windows
ISRs,
DPCs

Windows IRQ

Operating states of the RTOS-VM in exclusive mode
 Exception-handling or a higher priority interrupt becomes outstanding.
 Interrupt Service Routine optionally starts a new task and then finishes.

Note: When running the RTOS-VM in exclusive mode Windows will never be interrupted. Application
and interrupt processing run concurrently and independently on both CPU cores. There is no need in
the real-time software to enter the idle state.

01.03.2008 Page 4/19

1.3 Real-time Device Management
To achieve real-time behavior the RTOS will have to directly access its hardware devices. In fact,
hardware devices are never emulated, neither in Windows nor in the RTOS. Every specific device, e.g.
a PCI network adapter card will, then either be used by Windows or by the RTOS exclusively.
All hardware devices which shall be used by the RTOS will be managed by the Windows RtosPnp
driver shipped with the KUKA RTOS-VM.
Using the KUKA Real-Time Device Manager tool the user can select which device shall be used by
the RTOS and which by Windows.
Within the Windows Device Manager all RTOS devices will then appear in the “Realtime OS Devices”
tree:

Within the RTOS there are two methods for detecting whether a device can be accessed or not. For
PCI devices usually the PCI vendor and device ID can be used. For other devices (as well as for PCI
devices) the device name (e.g. RTOS PRO/100 PCI card) can be used.

01.03.2008 Page 5/19

1.4 Virtual Machine Framework
Using the KUKA RTOS-VM there is no need to understand the complex hardware of modern PC
systems. The basic hardware components of the PC (architecture specific processor registers, timer,
interrupt controller, memory handling/partitioning) can be accessed in the real-time software by simply
calling the appropriate functions that the RTOS-VM hardware abstraction layer (HAL) provides.
Besides the HAL functions the RTOS-VM provides additional services, especially for communication
with Windows:

• Shared Memory: Direct access to shared memory areas
• Shared Events: Notification using named events
• Data Access Synchronization: Interlocked Data Access
• Date and Time Synchronization
• Virtual Serial Channel
• Network Packet Library: basic Ethernet data transfer service
• RTOS configuration services (e.g. for dynamically setting the IP address of the virtual network)

The application interface between the real-time software and the RTOS-VM is called the Virtual
Machine Framework (VMF).
When calling VMF hardware functions the hardware will be directly accessed and not emulated. These
functions are called the VMF Hardware Abstraction Layer (HAL) functions.

01.03.2008 Page 6/19

1.4.1 VMF Architecture
The following figure shows the general architecture of the VMF when a RTOS is embedded within
Windows. Besides the basic VMF API (the HAL) which usually is required to build a RTOS BSP
(Board Support Package) the VMF contains functions for communication between Windows and the
RTOS (e.g. shared memory, events, network packet library). On top of the network packet library a
virtual network driver can be built which will then provide a virtual network connection between
Windows and the RTOS.

01.03.2008 Page 7/19

1.4.2 Basic VMF Services (Hardware Abstraction Layer)

The basic VMF services provide a simple programming interface to access the otherwise complex PC
hardware.
The following figure shows in more detail the basic VMF services which usually are used within a
RTOS Board Support Package.

Processor(s)
Processor(s)

Board Support Package

KUKA VMF Binary Module

System
Timer

Auxiliary
Timer

Interrupt
Controller

PIC
APIC/IOAPIC(s)

Timer Hardware
(e.g. 8254)

Interrupt
Manage-

ment

Cores,
Processor(s)

Multi-Core
Management

for SMP and AMP
systems

Enter RTOS:
Boot, Interrupt

Leave RTOS:
(Shared Core only)

Idle, Force Idle

Memory (RAM)

Memory
Management

Partitioning,
Shared Memory

BASIC VMF API (HAL functions)

Devices

PCI/PCIe/Legacy

Device
Management

Timer
Management

When porting system software (e.g. a RTOS Board Support Package) to run with the KUKA RTOS-VM
there is no need to directly access PC hardware like timers or interrupt controllers.
The VMF as well provides a generic method for booting the system software (e.g. a RTOS) and for
setting up the RTOS memory context (virtual memory).
When running on multi-core systems the VMF also provides methods for executing a RTOS which
supports Symmetric Multiprocessing (SMP).
Summarized, using the VMF one gets the following advantages:

• Fully virtualized hardware access (via Hardware Abstraction Layer functions). No need to
understand the complex PC hardware.

• Either run the RTOS and Windows together on one single core or use dedicated cores
exclusively for each operating system.

• The same RTOS image can be run either on a shared or a non-shared CPU core.
• Sophisticated Multi Core Support

o Run the RTOS on one single or on multiple cores (SMP)
o A RTOS can run in SMP mode even on dual core CPUs

01.03.2008 Page 8/19

1.5 Portability
When using standard frameworks or libraries the customer usually gets either source-code which in a
first step would have to be ported to his specific environment (operating system, compiler, linker).
In cases where the supplier does not want to ship the source-code the customer would have to wait
until a version for the framework/library is available for his environment.

To avoid these implications the KUKA VMF is not shipped as a library or source code but as a
relocatable binary module. This binary module will be loaded by the KUKA RTOS-VM at an arbitrary
location in the memory (the VMF code can be executed at any location in memory!).

Every call to a VMF function will then be redirected via well-known locations inside a jump table, this
jump table is stored at a well-defined location inside the binary module.
Thus there is no need to port one single line of C language or assembly language code (and no need
to add the VMF as an additional library to the customer’s environment).
The only requirement is to include one single header file. Within this header file the VMF functions are
simply defined as macros which call the appropriate functions using the function pointer in the jump
table.

Summarized, using the VMF binary module leads to the following advantages:

• No porting necessary, just include a C header file.
• No change necessary in the system software when new VMF versions are released (just

exchange the binary module by the new one).
• The same binary VMF module will be used together with different RTOSes; this ensures a

higher quality than if the VMF code would have been ported individually for any RTOS.

01.03.2008 Page 9/19

1.6 Memory Layout
VMF = Virtual Machine Framework
RTOS Framework = RTOS interface (VMF interface functions)

Windows 1 – The RTOS memory area (orange) will not be used by
Windows (RTOS memory configuration)

RTOS memory

RTOS 2
(QNX)

EntryPoint
G_oVmfFmwkAnchor

Framework

(VMF binary image)

G FmwkCoreDesc

Shared memory network

Internal shared memory InternalShmSize
[Vmf]

2 – The Uploader (RTOS Bootloader) copies the VMF
binary image (Framework) into an area allocated by
Windows (blue). The RTOS image is copied into the
RTOS memory (orange).

RTOS 0
(VxWorks)

EntryPoint
G_oVmfFmwkAnchor

RTOS 1
(Windows CE)

EntryPoint
G_oVmfFmwkAnchor

Uploader/RtosDrv

Shared memory
(No access by Windows)

3 – At a specific location in the RTOS image the uploader
will write the physical base address of the VMF image
(G_oVmfFmwkAnchor).

4 – After loading the RTOS image into the memory the
uploader will enter the RTOS boot entrypoint.

5 – The RTOS kernel will then boot. All memory areas
needed by the VMF (Internal / User Shm, virtual network,
LocalAPIC, IoAPICs etc.) will have to be mapped by the
RTOS.

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosEntryPointOffset
RteFmwkAnchorOffset

RtosMemoryStartAddress

RtosMemorySize
RtosEntryPointOffset
RteFmwkAnchorOffset

User shared memory UserShmSize
[Vmf]

[Rtos2]

RteMemorySize

RtosMemorySize
[Rtos1]

RtosMemorySize
[Rtos]

[Vmf]

RteMemoryStartAddress

01.03.2008 Page 10/19

1.7 General
The VMF defines a virtual machine platform to run one or multiple secondary operating systems
(RTOS) on top of a primary operating system (Windows).
The VMF is a binary module which is loaded at a predefined physical address. The interface function
entry points are located at fixed offsets within this binary module.
All functions of the VMF are fully relocatable, thus the VMF may be located at any physical address
and mapped into the RTOS memory context at an arbitrary location without to be recompiled or
relinked.

1.8 VMF management anchor
Some information about the VMF is needed within the RTOS, e.g. the physical base address of the
framework binary image. This data is located at a specific location inside the RTOS memory.
After loading the RTOS image into the memory the uploader will copy the VMF management data at
the appropriate location inside the RTOS memory

01.03.2008 Page 11/19

2 Example Implementation: Mini RTOS
The example implementation shows how to use the VMF functions to get a RTOS running.
Typically the Board Support Package of the RTOS has to be adjusted to use VMF functions.
Therefore the Mini RTOS example is split into two parts:

a) Board Support Package: Mini BSP
b) RTOS: Mini RTOS

The Mini BSP contains all the low level functions which initialize the hardware (timer, interrupt
controller). The Mini RTOS is merely a placeholder for a real RTOS. It doesn’t provide any real
functionality.

2.1 Content, directories
The example is split into the following directories:
2.1.1 DEFS
Header files needed when building a Board Support Package for the RTOS.

2.1.2 MiniBsp
Example BSP. This example BSP can be used as a starting point when creating a Board Support
Package for the target operating system.
The following list explains the functionality of the most important files:
• rtosBspAsm.s

 boot entry point, function bspInit().
• rtosBoot.c

 example RTOS boot sequence. Entry point at function rtosInit().
• rtosBsp.c

 Main BSP functions
• rtosBspTimer.c

 example timer implementation (the first timer is usually used for the RTOS clock tick timer, the
second timer is a auxiliary timer to be used by the application).

• device.config
 Real-Time device management configuration file (for devices which are configured manually)

• rtos.config
 RTOS configuration file (required for booting the RTOS)

2.1.3 MiniRtos
This is a placeholder for a real RTOS. The Mini BSP needs some of these functions.

01.03.2008 Page 12/19

2.2 Build the Mini RTOS
The Mini RTOS is built using the shipped GNU tools.
The following steps have to be executed:

• Start a Windows command shell
• Change into the examples directory
• Set the appropriate environment by running setenv.bat
• Start the build using the BuildMiniRtos.bat file

As result the file MiniRtos.bin will be generated.
This file can be loaded and started by the RTOS-VM Uploader tool.

2.3 Start the Mini RTOS
Using the RTOS-VM Uploader tool the Mini RTOS binary image (MiniRtos.bin) can be loaded
into memory and is then started automatically.
The following additional files are required (located in the same directory):

• rtos.config RTOS configuration file including information for the Uploader
• device.config RTOS device configuration file
• vmf.bin VMF binary image
• Windows runtime environment for the RTOS-VM: The Uploader tool, the RTOS

service and the RTOS control application.
The Mini RTOS can then be started with the following command line:
UploadRTOS.exe MiniRtos.bin

01.03.2008 Page 13/19

2.4 Debug Console
The virtual I/O channel is used as debug console.
The shipped putty Telnet client also supports the virtual I/O channel (using the command line
option –vio).
After starting the Mini RTOS the putty application can be started with the –vio option and the
following messages are printed.

Using the debug console is very helpful in the bring-up phase of the RTOS. Messages can
be printed out at a very early stage.
The file rtosBsp.c contains helpful routines like DbgPrintf() which prints a formatted message
similar to printf() but without needing the RTOS.
The function DbgWait() can be used to stop processing until the user presses a key at the
debug console.

01.03.2008 Page 14/19

3 RTOS configuration
The rtos.config file contains several entries where memory and CPU settings are defined. RTOS
specific settings may also be stored herein; these settings will have to be processed by the RTOS.
Settings for a RTOS are stored beyond a RTOS specific key.
The first RTOS gets the key “[Rtos]”, the second gets the key “[Rtos1]” etc.
The following entries are defined:

• MemoryStartAddress RTOS memory physical base address
• MemorySize RTOS memory size
• ImageOffset Offset where the RTOS image has to be copied by the uploader
• EntryPointOffset Boot entrypoint offset of the RTOS
• VmfAnchorOffset VMF management anchor offset. After loading the RTOS image the

uploader will copy the VMF management information data at this
location.

• ProcessorMask CPU mask to determine where the RTOS shall run (multiple bits could
be set in case of a SMP system)

Example:
 [Rtos] ; OsId = 0
 "MemoryStartAddress"=dword:1000000 ; Note: value is hexadecimal!
 "MemorySize"=dword:1000000 ; Note: value is hexadecimal!

 "ImageOffset"=dword:8000 ; RTOS image offset
 "EntryPointOffset"=dword:8000 ; RTOS boot entrypoint offset
 "VmfAnchorOffset"=dword:8010 ; RTOS management anchor offset

 "ProcessorMask"=dword:0x0001 ; VxWin on shared BP

 "Bootline" = "shm(0,1)pc:vxWorks h=192.168.0.1 e=192.168.0.2 u=target pw=vxworks"

[Rtos1] ; OsId = 1
 "MemoryStartAddress"=dword:2000000 ; Note: value is hexadecimal!
 "MemorySize"=dword:1000000 ; Note: value is hexadecimal!
 "ImageOffset"=dword:8000 ; RTOS image offset
 "EntryPointOffset"=dword:8000 ; RTOS boot entrypoint offset
 "VmfAnchorOffset"=dword:8010 ; RTOS management anchor offset

 "ProcessorMask"=dword:0x000E ; run in SMP mode on AP1, AP2, AP3

 "Bootline" = "vnet(0,1)pc:vxWorks h=192.168.0.1 e=192.168.0.2 u=target pw=vxworks"

01.03.2008 Page 15/19

4 Using the VMF API functions

Every framework function uses a pointer to the framework and a pointer to a data area. These two
pointers shall be globally defined. The names of the pointer variables are fix and must be pFmwkDesc
and pvFmwkData.

If paging is disabled pFmwkDesc points to a physical address, otherwise it must point to a virtual
address. The physical base address of the VMF can be found at a specific location in memory, the
VMF anchor descriptor (VMF_ANCHOR_DESC). This location is determined as follows:

Pointer to VMF_ANCHOR_DESC = MemoryStartAddress + VmfAnchorOffset

The values of MemoryStartAddress and VmfAnchorOffset can be found in the rtos configuration file.

The size of the data area at which pvFmwkData points is fix, it is set by the macro
VMF_FMWK_DATADESC_SIZE.

The VMF can only be used after the variables pFmwkDesc and pvFmwkData are initialized. See
section 5.2 for more details.

Prior to using VMF functions you have to include the vmfInterface.h header file.
The header file rteOs.h contains data types used by the framework functions.
Error definitions are located in rteError.h.

Example:
#include <vmfInterface.h>
#incluede <rteError.h>

01.03.2008 Page 16/19

5 Booting the RTOS

5.1 Pre-boot steps
The following steps are executed by the RTOS uploader prior to enter the boot entrypoint of the
RTOS.

• Clear the RTOS memory area
• Copy the RTOS image file at the appropriate offset inside the RTOS memory area
• Store the VMF management information at the anchor offset address inside the RTOS

memory area
After these preparing steps the boot entrypoint of the RTOS will be called.
The boot entrypoint is called in 32 bit protected mode with valid GDT and SS, DS and CS selectors
that allow 4 GByte of memory to be addressed. Paging is turned off.

5.2 Framework initialization, Framework memory context mapping
Every framework function uses a pointer to the framework and a pointer to a data area. These two
pointers may be globally defined. The names of the pointer variables are fix and must be pFmwkDesc
and pvFmwkData.

If paging is disabled pFmwkDesc points to a physical address, otherwise it must point to a virtual
address. The physical base address of the VMF can be founded at a specific location in memory, the
VMF anchor descriptor (VMF_ANCHOR_DESC). This location is determined as follows:

Pointer to VMF_ANCHOR_DESC = MemoryStartAddress + VmfAnchorOffset

The values of MemoryStartAddress and VmfAnchorOffset can be found in the rtos configuration file.

The size of the data area at which pvFmwkData points is fix, it is set by the macro
VMF_FMWK_DATADESC_SIZE.

Prior to using VMF functions you have to include the vmfInterface.h header file. The header file
rteOs.h contains data types used by the framework functions.

Example:
#include <vmfInterface.h>
#incluede <rteOS.h>

/**
* DEFINES
*/

#define RTOS_BASE_ADDR 0x1000000 /* base physical address where the RTOS is linked to */
#define RTOS_VMF_ANCHOR_OFFSET 0x2000 /* VMF anchor offset in RTOS memory */

/**
* GLOBALS
*/

PVMF_FMWK_DESC pFmwkDesc = NULL;
VOID* pvFmwkData = NULL;
UINT8 G_oVmfFmwkData[VMF_FMWK_DATADESC_SIZE];
VMF_ANCHOR_DESC* G_pVmfAnchorDesc = (VMF_ANCHOR_DESC*)(RTOS_BASE_ADDR +

RTOS_VMF_ANCHOR_OFFSET);
void FrmwkInit{void)

/* VMF pointers initialization */
pFmwkDesc = (PVMF_FMWK_DESC)G_pVmfAnchorDesc->dwFmwkAddrPhys;
pvFmwkData = &G_oVmfFmwkData[0];

// now framework functions can be used (after VMF initialization!)

}

01.03.2008 Page 17/19

Prior to calling any framework functions some memory area mappings have to be initialized.
Afterwards the basic framework initialization has to be executed with paging turned on.

Step 1: vmfCoreGetKernelMapTablePhys()
 This call will return a mapping table with physical memory areas which have to be mapped at an

arbitrary virtual memory location. The mapping table contains the following information for each
memory area:

• Memory type (e.g. IOAPIC memory area, internal shared memory area, virtual network
memory area)

• Physical base address
• Memory size

The virtual memory location must be calculated and returned back to the Framework.
The following macros are used in the Framework to identify the type of memory.
Memory types are mainly divided into two types, cached and uncached:

Cached:
VMF_KERNELMAP_RTOSMEMORY RTOS memory area
VMF_KERNELMAP_FRAMEWORK VMF binary module memory area
VMF_KERNELMAP_INTERNALSHM Internal shared memory
VMF_KERNELMAP_USERSHM User shared memory
VMF_KERNELMAP_PROCESSORBOOTCODE Memory area with processor boot code
VMF_KERNELMAP_VNET Shared memory area fort he virtual network

Uncached:
VMF_KERNELMAP_INTERRUPT_PROCESSOR Local APIC memory
VMF_KERNELMAP_INTERRUPT_IOAPIC I/O APIC memory

The RTOS (BSP) has to map these memory areas at an arbitrary virtual address location. The virtual
base addresses then have to be stored in the mapping table.
Later, calls to some of the framework function will then require a pointer to the mapping table to be
able to access these memory areas – the framework function will then use the virtual base address
provided by the RTOS.

Optional step 1b: map memory regions, enable paging
 In this step the MMU will be enabled and all memory areas returned by

vmfCoreGetKernelMapTablePhys() will have to be mapped, the virtual addresses in the mapping table
will then have to be set to the appropriate values.
The areas to be mapped are (see above):

• RTOS framework binary image
• Internal shared memory
• Additional framework memory regions

Step 2: call vmfCoreInit()
 basic framework hardware initialization (e.g. initializing framework data descriptor)

Optional step 2b: map memory regions, enable paging (if not done in 1b)
 After the MMU is enabled the virtual addresses in the kernel mapping table have to be set to the

appropriate values.

...
for (nLoop = 0; nLoop < nUsedEntries ; nLoop++)
{

if (aVmfKernelMap[nLoop].dwType == VMF_KERNELMAP_FRAMEWORK)
 {

pFmwkDesc = aVmfKernelMap[nLoop].dwVirtAddress;
 break;
 }

}

vmfCoreInit(G_pVmfAnchorDesc, aVmfKernelMap, nUsedEntries);

Step 3: call vmfCoreHwInit()
 basic hardware initialization (e.g. interrupt controller, timer)

01.03.2008 Page 18/19

5.3 RTOS boot
The last step is to finish booting the RTOS.

5.4 Shared processor core: RTOS idle loop
If the RTOS is running in shared mode (shared with a primary operating system on the same
processor core, e.g. Windows) it has to return every time when entering the idle loop. Otherwise the
primary operating system will never be executed.
A call to vmfCoreIdleRoutine() will return to the primary OS (e.g. Windows).
If the RTOS does not provide a specific idle loop a task with lowest priority has to be created which
has to call this function.

01.03.2008 Page 19/19

	KUKA RTOS Virtual Machine Overview
	Shared Mode Operation
	Exclusive Mode Operation
	Real-time Device Management
	Virtual Machine Framework
	VMF Architecture
	Basic VMF Services (Hardware Abstraction Layer)

	Portability
	Memory Layout
	General
	VMF management anchor

	Example Implementation: Mini RTOS
	Content, directories
	DEFS
	MiniBsp
	MiniRtos

	Build the Mini RTOS
	Start the Mini RTOS
	Debug Console

	RTOS configuration
	Using the VMF API functions
	Booting the RTOS
	Pre-boot steps
	Framework initialization, Framework memory context mapping
	RTOS boot
	Shared processor core: RTOS idle loop

