Strong Typing — JMT Library June-2013

Strong Typing
To explore the topic of Strong Typing, let’s look at two SimpleTypes from the Open Travel schema
OTA_SimpleTypes.xsd.

In Figure 1 we see the schema definition for an IS04217, it’s a restriction of a ‘string’ base type
using a business-relevant pattern which provide the very specific structure of the entity.

<xs:simpleType nam=="1504217">
<xs:annotation>
<xs:documentation xml:lang="en">Specifies a 3 character currency code as defined in IS04217.</xs:documentation>
</x%s:annotation>
<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z]{3}"/>
</xs:restriction>
</xs:simpleType>

Figure 1 1SO04217 Type Definition

In Figure 2 we see a superficially similar type definition, that of IS03166, where againit’s a
restriction of a ‘string’ base type with a different pattern to that of the 1S04217.

£xs:simpleType name="I1503166">
<xs:annotation>
<xs:documentation xml:lang="en">Specifies a 2 character country code as defined in IS03166.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:pattern value="[a-zA-Z]{2}"/>
</xs:restriction>
</x%xs:simpleType>

Figure 2 1SO3166 Type Definition

Typically these entities would be referenced as simple string types thus removing completely the
important business-relevant information held in the xs : pattern data. Now let’s look at their
corresponding representations in the JMT library, fragments of the classes representing the two
types are shown in the following figures.

public partial class IS03166Type : JImt.MessageDefinitionProcessor.TypeSupport.RestrictedStringBase, ICloneable, ISerializable

{
Fieldd

#region Constructors

/// <summary>
/// Initializes a new instance of the <see cref="IS03166Type"/> class.
/// </summary>
/// <remarks>The value name is Empty and the ValueChanged handler is null (by default).</remarks>
/// <exception cref="ArgumentException”>Thrown when a required parameter has not been provided or is invalid.</exception>
[Browsable(false)]
[Description("Initializes a new instance of the 'IS03166Type' class.")]
public ISO3166Type() :
base(
"1S03166Type",
ConfigSingleton.ConfigInstance.TypeValidates("SimpleType"))

// Set property default values
this._regexPattern = @"[a-zA-Z]{2}";

// Initialize Restriction content
this.InitializeRestrictionList();

// Initialize Annotation content
this.InitializeAnnotationInfo();

Figure 3 JMT Type Representation ISO3166

© Copyright 2013, Jet Messaging Technologies AG 1/7

Strong Typing — JMT Library June-2013

public partial class IS04217Type : Imt.MessageDefinitionProcessor.TypeSupport.RestrictedStringBase, ICloneable, ISerializable

{

#region Constructors
/// <summary>
/// Initializes a new instance of the <see cref="IS04217Type"/> class.
/17 </summary>
/// <remarks>The value name is Empty and the ValueChanged handler is null (by default).</remarks>
/// <exception cref="ArgumentException”>Thrown when a required parameter has not been provided or is invalid.</exception>
[Browsable(false)]
[Description("Initializes a new instance of the 'IS04217Type' class.")]
public IS04217Type() :
base(
"1504217Type",
ConfigSingleton.ConfigInstance.TypeValidates("SimpleType™))

// Set property default values
this._regexPattern = @"[a-zA-Z]{3}";

// Initialize Restriction content
this.InitializeRestrictionList();

// Initialize Annotation content
this.InitializeAnnotationInfo();

// Attempt to create the regular expression

Figure 4 IMT Type Representation 1SO4217

These class definition, of themselves, represent strong type definitions that can be used in a general
programming context. For example, taking IS04217Type, we might write statements as shown in
Figure 5 and try and set the value of an IS04217Type object directly to the value of a simple string
and attempt to compile:

= public class UnitTestl

{
[TestMethod]
= public void TestMethodl()
{
Imt.OpenTravel .0TA.V2012A.1504217Type iso04217 =
new Jmt.OpenTravel.OTA.V2012A.1504217Type();
string s = "Hello World!";
1504217 = s;
}
}
100% ~
Error List ettt ettt bttt e el e e e e it bl e e

Y - ! 7 Warnings

Description «

91 Cannot implicitly convert type 'string’ to Jmt.OpenTravel OTA.V2012A.1S04217Type'

Figure 5 Compile-Time Type Violation (Variant 1)

The strong typing of the IS04217Type is now clearly demonstrated by the error displayed in the
Error List of Visual Studio.

© Copyright 2013, Jet Messaging Technologies AG 2/7

Strong Typing — JMT Library June-2013

In addition, we could also attempt to set the type value to each other, as show in Figure 6 below:

Imt.OpenTravel.0TA.V2012A.I1504217Type iso04217 =

new Jmt.OpenTravel.OTA.V2012A.I504217Type();
Jmt.OpenTravel.0TA.V2012A.IS03166Type is03166 =

new Jmt.OpenTravel.OTA.V2@12A.I503166Type();
1504217 = 1s03166;

100% ~

Y - ! 7 Warnings

Description ~

®1 Cannot implicitly convert type "Jmt.OpenTravel. OTAV2012A.1S0O3166Type' to
Jmt.OpenTrave OTAV2012A.1S04217Type'

Figure 6 Compile-Time Type Violation (Variant 2)

It should be also noted that as the original schema had specified documentation then the generated
type preserves this vital information for display to the developer when writing code and hovering
over the type name, as we can see in Figure 7 below:

public class UnitTestl
{
[TestMethod]
public void TestMethodl()
{
Jmt.OpenTravel .0TA.V2012A.1504217Type iso04217 =
.) ”e";ljmt 'OFI’STI'" dass JmtOpenTravel.OTA V2012A1S04217Type
?tr‘lng s = "Hello lorldi®; [en] Specifies a 3 character currency code as defined in 1ISO4217.
1504217 = s;
¥
3

Figure 7 Schema Documentation for the Developer

It’s one thing to have such a key ‘helper’ as the basic strong typing, to ensure correct programming
constructs at compile-time, but there are a range of other operational characteristics that have to be
thought about when crafting real types.

If we think about the definitions of the types in the schema, it is expressed as a restriction, specifying
precisely the allowed form of values of an IS03166 or 1S04217.As a question of type design, we
need to provide a consistent means to enforce this restriction. Within the JMT library, types have an
event defined that fires when an attempt is made to set an ‘invalid’ value, compared, in these
specific cases, with the defining pattern.

© Copyright 2013, Jet Messaging Technologies AG 3/7

Strong Typing — JMT Library June-2013

: - public void TestMethodC()
Run All | Run.. = | Playlist: All Tests « =

{
d Failed Tests (1) - Jmt.OpenTravel .OTA.V2@12A.1503166Type 1503166 =
@ TestMethodC 234 ms new Jmt.OpenTravel.OTA.V2012A.IS03166Type();
e iso03166.Text = "Hello World!";
1
TestMethodC }
Source: UnitTestl.cs line 32 }

€3 Test Failed - TestMethodC

Message: Test method
UnitTests.UnitTestl.TestMethodC
threw exception:
System.ArgumentException: 'Text’
value failed validation.

Figure 8 Invalid Value Exception

In Figure 8, an attempt is being made to set the ‘Text’ property, which holds the ‘value’ of the object,
of the IS03166Type object to (an obviously) incorrect value. Without taking any steps to guard
against this sort of action, the left hand panel of Visual Studio informs us that an exception has been
thrown of type System.ArgumentException, this being thrown by the strong type itself in this
circumstance.

Of course, the business application developer would not write code that simply threw an exception
when the value of a typed object is being set to an ‘invalid’ value. The normal and more useful
approach would be to wrap the value setting statements in a try/catch block, as exemplified in the
code fragments of Figure 9 and Figure 10, for ‘bad’ and ‘good’ values:

[T CrT=TImow]

Run All | Run.. = | Playlist: All Tests = 1 public void TestMethodD()

4 Passed Tests (1) - {
@ TestMethodD 37 ms IJmt.OpenTravel .0TA.V2012A.I503166Type 1s03166 =
) - new Jmt.OpenTravel.0TA.V2012A.I503166Type();
string s = "Hello World!";
TestMethodD try
Source: UnitTestl.cs line 40 {

is03166.Text = s;
@ Test Passed - TestMethodD ’

Flapsed time: 37 ms Assert.IsTrue(false, "did not see the expected exception");
}
catch (System.ArgumentException ex)
{

// should see the expected exception
Assert.IsTrue(true);

Figure 9 Try/Catch Block — Basic (Invalid Value)

© Copyright 2013, Jet Messaging Technologies AG 4/7

Strong Typing — JMT Library

June-2013

4 Passed Tests (1)

@ TestMethodE 45 ms

-

TestMethodE
Source: UnitTestl.cs line 60
@ Test Passed - TestMethodE
Elapsed time: 45 ms
Qutput

Jmt.OpenTravel.OTA.V2@12A.1503166Type is03166 =
new Jmt.OpenTravel.OTA.V2012A.IS03166Type();
string s = "az";
try
{
is03166.Text = s;

// ...it should work
Debug.WriteLine(Environment.NewLine + "The value setting worked ok™ + Environment.NewLine);

}

catch (System.ArgumentException ex)

// ...should not see the exception
Debug.WriteLine(Environment.NewLine + "The value setting did NOT work ok" + Environment.NewLine);
}
}
100% ~ 4
Qutput
Show output from: Debug - |

The value setting worked ok

Figure 10 Try/Catch Block — Improved (Valid Value)

When using JMT types it may not be sufficient to just catch the ‘validation failed’” exception as shown
above. For such themes as “separation of concerns” and architectural patterns such as Model/View-
Model/Model, it is highly desirable to connect components using events.

This event model is also catered for in the JMT types, so, for instance, as shown below, the
developer can subscribe to a specific ‘validation failed’ event and take appropriate action in a
defined handler. This handler could be one that signals to a user that an invalid IBAN has been
selected or entered or perhaps composed a reply/response message that is sent to a caller of the
component where such validation is performed.

The code fragment of Figure 11 shows the approach:

-) -) Imt.OpenTravel.OTA.V2012A.I503166Type 1503166 =
Run All | Run... > | Playlist : All Tests ~ new Jmt.OpenTravel.OTA.V2612A. T503166Typa();
Passed Tests (1) a iso3166.ValidationFailed += iso03166_ValidationFailed;
© TestMethodF e - // Get the ISO value, maybe from a user interface
// Set the value to a 'valid' value, the event should not fire
TestMethodF i503166.Text = "Zs";
Source: UnitTestl.cs line 80 // Set the value to an 'inavid' value, the event should fire
i503166.Text = "12";
@ Test Passed - TestMethodF }
Elapsed time: 2 sec
Output void is03166_ValidationFailed(cbject sender,
= Imt.MessageDefinitionProcessor. TypeSupport.SimpleTypeValidationErrorEventArgs e)
Debug.WriteLine(Environment.NewLine + "Validation failed: " + Environment.NewLine);
Debug.WritelLine("Current value: " + e.CurrentValue);
Debug.WriteLine("Attempted value: " + e.AttemptedValue);
}
100% - 4
Show output from: Debug - - |
validation failed:
ul t a
ttempted value: 1

Figure 11 Validation Failed Event Subscription

Along with the ‘validation failed’ event, the JMT types allow the developer to catch an event that
signals when the value of a type changes. This would be particularly relevant for a User Interface (Ul)
component. This general theme is exemplified in the code fragment of Figure 12:

© Copyright 2013, Jet Messaging Technologies AG 5/7

Strong Typing — JMT Library June-2013

R 1 T = P A IS = Imt.OpenTravel.OTA.V2012A. T503166Type 1503166 =
P yp
@ Passed Tests (1) - new Jmt.OpenTravel.OTA.V2@12A.1503166Type();
@ TestMethodG 18 is03166.Name = "TestISOValue";
estMetho ms

is03166.ValueChanged += iso03166_ValueChanged;

TestMethodG // Get the ISO value, maybe from a user interface
Source: UnitTestl.cs line 102 // Set the value to a 'valid' value, the event should not fire
is03166.Text = "Zs";
© Test Passed - TestMethodG // Set the value to another 'valid' value, the event should fire
Elapsed time: 48 ms is03166.Text = "qq";

Output 1

void iso3166_ValueChanged(object sender,
-] Imt.MessageDefinitionProcessor.TypeSupport.SimpleTypeValueChangedEventArgs e)
{
Debug.WritelLine(Environment_.NewLine + "[" + e.ValueName + "] value changed " + Environment.NewLine);
}
}
100% ~ 4

Output

IRt
t

Show output from: Debug ¥

[TestTSovalue] value changed

Figure 12 Value Changed Event Subscription

Note in this example how the object has been named so that the specific entity that is having its
value changed can be identified from the information in the event handler argument (event handler
could be shared).

Another key features of strong types is that they can be used in operator-type programming
statements, they allow meaningful cloning and possess a type-specific Equals () method. The JMT
types possess all these characteristics, as demonstrated in the code fragment of Figure 13:

Run All | Run..~ | Playlist: All Tests ~ Imt.OpenTravel.OTA.V2012A.1503166Type is03166_1 =
- new Jmt.OpenTravel.OTA.V2012A.IS03166Type();
Bassediiet]1) 1503166_1.Name = "TestISOvaluel”;
@ TestMethodG S0ms - i503166_1.ValueChanged += is03166_ValueChanged;
i1s03166_1.ValidationFailed += iso03166_ValidationFailed;
TestMethodG 1503166_1.Text = "Zs";

Source: UnitTest1.cs line 123 .
Jmt.OpenTravel.0TA.V2012A.1503166Type is03166_2 =

@ Test Passed - TestMethodG new Jmt.OpenTravel.OTA.V2012A.IS03166Type();
Elapsed time: 50 ms i1s03166_2.Name = "TestISOValue2";
Output 1503166_2.ValueChanged += iso3166_ValueChanged;

i1s03166_2.ValidationFailed += iso3166_ValidationFailed;
i1s03166_2.Text = "vC";

Assert.IsFalse(iso03166_1.Equals(iso3166_2), "iso03166_1 should NOT equal iso3166_2");
Assert.IsFalse(iso3166_1 == is03166_2, "The two ISO values do not compare as expected (==)");
Assert.IsTrue(iso3166_1 != is03166_2, "The two ISO values do not compare as expected (!=)");
Debug.WriteLine(Environment.NewlLine + “"Test ran successfully" + Environment.NewLine);

¥
100 % ';
Qutput
Show output from: Debug i E

[TestIsovalue2] value changed

Figure 13 Comparison Operators & Methods

All the assertions in this code fragment will pass for the two, distinct IS03166Type objects. The
developer can now choose whichever idiom they wish to assert (non-)equality between not only
pairs of this specific type but any JMT type pairs. As noted above, in addition to these ‘equality’
idioms our strong types should allow for cloning. In Figure 14 below, this characteristic is seen in
operation.

© Copyright 2013, Jet Messaging Technologies AG 6/7

Strong Typing — JMT Library June-2013
reaming Video: Improving quality wi unittes ¥ .
) Jmt.OpenTravel.QTA.V2@12A.1503166Type 1s03166_1 =
un All | Run... > | Playlist : All Tests ~ new Jmt.OpenTravel.OTA.V2012A. TSO3166Typa();
Passed Tests (1) - is03166_1.Name = "TestISOValuel";
is03166_1.ValueChanged += is03166_ValueChanged;
O TestMethodH S ~ is03166_1.ValidationFailed += iso3166_ValidationFailed;
is03166_1.Text = "Zs";
estMethodH
Source: UnitTest1.cs line 146 Jmt.OpenTravel.OTA.V2@12A.1503166Type 1s03166_2 =
(Imt.OpenTravel.0TA.V2012A.1503166Type)is03166_1.Clone();
© Test Passed - TestMethodH 1503166_2.Name = "TestISOValuel";
Elapsed time: 55 ms i1503166_2.ValueChanged += is03166_ValueChanged;
Output is03166_2.ValidationFailed += is03166_ValidationFailed;
is03166_2.Text = "vC";
Assert.IsTrue(string.Compare(iso3166_1.Name, "TestISOvaluel", false) == 8,

"distinct names of the two objects was not observed");
Assert.IsFalse(is03166_1.Equals(is03166_2), "is03166_1 should NOT equal iso3166_2");
Assert.IsFalse(iso3166_1 is03166_2, "The two ISO values do not compare as expected (==)");
Assert.IsTrue(iso3166_1 i503166_2, "The two ISO values do not compare as expected (!=)");
Debug.WriteLine(Environment.NewLine + "Test ran successfully” + Envirconment.NewLine);

100% ~ 4
Qutput
Show output from: Debug M E ra

Test ran successfully

Figure 14 Cloning Method

© 06/2013 Jet Messaging Technologies AG

All rights reserved.

Jet Messaging Technologies AG

Rotwandstrasse 35, 8004 Zurich, Switzerland

Phone +41 79 176 89 80

Email info@jet-messaging.com
www.jet-messaging.com

© Copyright 2013, Jet Messaging Technologies AG

7/7

