

© Copyright 2013, Jet Messaging Technologies AG 1/7

1 Strong Typing – JMT Library June-2013

Strong Typing
To explore the topic of Strong Typing, let’s look at two SimpleTypes from the Open Travel schema

OTA_SimpleTypes.xsd.

In Figure 1 we see the schema definition for an ISO4217, it’s a restriction of a ‘string’ base type

using a business-relevant pattern which provide the very specific structure of the entity.

Figure 1 ISO4217 Type Definition

In Figure 2 we see a superficially similar type definition, that of ISO3166, where again it’s a

restriction of a ‘string’ base type with a different pattern to that of the ISO4217.

Figure 2 ISO3166 Type Definition

Typically these entities would be referenced as simple string types thus removing completely the

important business-relevant information held in the xs:pattern data. Now let’s look at their

corresponding representations in the JMT library, fragments of the classes representing the two

types are shown in the following figures.

Figure 3 JMT Type Representation ISO3166

© Copyright 2013, Jet Messaging Technologies AG 2/7

2 Strong Typing – JMT Library June-2013

Figure 4 JMT Type Representation ISO4217

These class definition, of themselves, represent strong type definitions that can be used in a general

programming context. For example, taking ISO4217Type, we might write statements as shown in

Figure 5 and try and set the value of an ISO4217Type object directly to the value of a simple string

and attempt to compile:

Figure 5 Compile-Time Type Violation (Variant 1)

The strong typing of the ISO4217Type is now clearly demonstrated by the error displayed in the

Error List of Visual Studio.

© Copyright 2013, Jet Messaging Technologies AG 3/7

3 Strong Typing – JMT Library June-2013

In addition, we could also attempt to set the type value to each other, as show in Figure 6 below:

Figure 6 Compile-Time Type Violation (Variant 2)

It should be also noted that as the original schema had specified documentation then the generated

type preserves this vital information for display to the developer when writing code and hovering

over the type name, as we can see in Figure 7 below:

Figure 7 Schema Documentation for the Developer

It’s one thing to have such a key ‘helper’ as the basic strong typing, to ensure correct programming

constructs at compile-time, but there are a range of other operational characteristics that have to be

thought about when crafting real types.

If we think about the definitions of the types in the schema, it is expressed as a restriction, specifying

precisely the allowed form of values of an ISO3166 or ISO4217. As a question of type design, we

need to provide a consistent means to enforce this restriction. Within the JMT library, types have an

event defined that fires when an attempt is made to set an ‘invalid’ value, compared, in these

specific cases, with the defining pattern.

© Copyright 2013, Jet Messaging Technologies AG 4/7

4 Strong Typing – JMT Library June-2013

Figure 8 Invalid Value Exception

In Figure 8, an attempt is being made to set the ‘Text’ property, which holds the ‘value’ of the object,

of the ISO3166Type object to (an obviously) incorrect value. Without taking any steps to guard

against this sort of action, the left hand panel of Visual Studio informs us that an exception has been

thrown of type System.ArgumentException, this being thrown by the strong type itself in this

circumstance.

Of course, the business application developer would not write code that simply threw an exception

when the value of a typed object is being set to an ‘invalid’ value. The normal and more useful

approach would be to wrap the value setting statements in a try/catch block, as exemplified in the

code fragments of Figure 9 and Figure 10, for ‘bad’ and ‘good’ values:

Figure 9 Try/Catch Block – Basic (Invalid Value)

© Copyright 2013, Jet Messaging Technologies AG 5/7

5 Strong Typing – JMT Library June-2013

Figure 10 Try/Catch Block – Improved (Valid Value)

When using JMT types it may not be sufficient to just catch the ‘validation failed’ exception as shown

above. For such themes as “separation of concerns” and architectural patterns such as Model/View-

Model/Model, it is highly desirable to connect components using events.

This event model is also catered for in the JMT types, so, for instance, as shown below, the

developer can subscribe to a specific ‘validation failed’ event and take appropriate action in a

defined handler. This handler could be one that signals to a user that an invalid IBAN has been

selected or entered or perhaps composed a reply/response message that is sent to a caller of the

component where such validation is performed.

The code fragment of Figure 11 shows the approach:

Figure 11 Validation Failed Event Subscription

Along with the ‘validation failed’ event, the JMT types allow the developer to catch an event that

signals when the value of a type changes. This would be particularly relevant for a User Interface (UI)

component. This general theme is exemplified in the code fragment of Figure 12:

© Copyright 2013, Jet Messaging Technologies AG 6/7

6 Strong Typing – JMT Library June-2013

Figure 12 Value Changed Event Subscription

Note in this example how the object has been named so that the specific entity that is having its

value changed can be identified from the information in the event handler argument (event handler

could be shared).

Another key features of strong types is that they can be used in operator-type programming

statements, they allow meaningful cloning and possess a type-specific Equals() method. The JMT

types possess all these characteristics, as demonstrated in the code fragment of Figure 13:

Figure 13 Comparison Operators & Methods

All the assertions in this code fragment will pass for the two, distinct ISO3166Type objects. The

developer can now choose whichever idiom they wish to assert (non-)equality between not only

pairs of this specific type but any JMT type pairs. As noted above, in addition to these ‘equality’

idioms our strong types should allow for cloning. In Figure 14 below, this characteristic is seen in

operation.

© Copyright 2013, Jet Messaging Technologies AG 7/7

7 Strong Typing – JMT Library June-2013

Figure 14 Cloning Method

© 06/2013 Jet Messaging Technologies AG
All rights reserved.

Jet Messaging Technologies AG
Rotwandstrasse 35, 8004 Zurich, Switzerland
Phone +41 79 176 89 80

Email info@jet-messaging.com
www.jet-messaging.com

