
 TECHNICAL NOTES

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 1

JMT and NDC/Airline Shopping
Accelerating development for NDC/Airline Shopping

This TechNote gives concrete information as to how JMT Types for New Distribution Capability (NDC) Shopping can be
used. The type landscape for NDC is specified by Schemas published by IATA (http://www.iata.org/whatwedo/airline-
distribution/ndc/Pages/default.aspx) and the first public release covers the Shopping dictionary. It is this that forms the
types used in this TechNote.

Summary

This TechNote demonstrates the following:

 the ease with which JMT types can be used by the developer

 how the developer, at coding time, gets to see the full range of Schema-based documentation

 how Intellisense and Auto-Completion are key accelerators of development

 how type validation (for every JMT type) is handled

 how the serialisation of JMT types can be achieved

http://www.jet-messaging.com/
http://www.iata.org/whatwedo/airline-distribution/ndc/Pages/default.aspx
http://www.iata.org/whatwedo/airline-distribution/ndc/Pages/default.aspx

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 2

The NDC Airline Shopping Schemas

The JMT processor generates a type landscape from the Schemas published by IATA. The basis of this TechNote is the
Schemas at version 1.0 (id=”NDC2014.1”).

To illustrate how the NDC Airline Shopping type library can accelerate the development task, we will be looking specifically
at the type named AirShoppingRQ contained in the Schema file AirShoppingRQ.xsd, an overview of this type is given in
Figure 1.

Figure 1 AirShoppingRQ Schema Definition

Here we see that essentially this type is composed of a sequence followed by attributes. Within the sequence some entities
are mandatory (minOccurs=1 or use=”required”) whilst others are optional (minOccurs=0 or use=”optional”). In particular
we can identify the top-level mandatory entities in this message, see the following table:

Entity Comment

nc:SaleInfo This is an element which must occur once only. The definition of this entity is specified
in the Schema CommonTypes.xsd

TravelerCount This is an element which by default must occur only once. The definition of this entity is
specified locally, inline

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 3

So, in fact, the mandatory parts of this particular message are quite small. However the definitions of the two entities
identified above are quite complex, see Figure 2 and Figure 3 below:

Figure 2 SaleInfo/SaleInfoType Type Definitions

Figure 3 TravelCount Local Type Definition

The JMT Type - Testing
To explore this request message type as it appears in the JMT library, we have constructed a Visual Studio Solution
containing the following:

Item Comment

Project: NDC.Shopping.2014 This is a Class Library project containing the source code
generated from the JMT Processor for NDC/Airline
Shopping Schemas V2014.1

Project: UnitTestProject_NDC.Shopping.2014 This is a Unit Test project which we will use to exercise the
generated code

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 4

This Solution/Project layout is as shown in Figure 4:

Figure 4 Solution/Project Layout

Within the project NDC.Shopping.2014, there are folders in which the types corresponding to Schema entities
are held. For example, in the case of types arising from element definitions, the folder contents are as shown,
below:

Figure 5 NDC/Airline Shopping Element-based Types

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 5

The Unit Test project (UnitTestProject_NFC.2014) is designed to exercise classes in the main library project
(NDC.Shopping.2014). In particular we will look at the NDC/Airline Shopping, AirShoppingRQ, which represents a message.
In practice, of course, a development project would have a Reference to the installed JMT library rather than one to the
generated code project. However, for the purpose of this TechNote it is useful to deal with the generated code in this way.
To illustrate the simplicity of using a JMT library, the Unit Test Methods are designed to gradually build to a point where
the message is serialized. The following table lists the tests:

Test Comment
TestMethod_AirShoppingRQ_A_Instantiate This test asserts that the JMT class

Jmt.IATA.NDC.V2014.Shopping.Element.AirShoppingRQ can be
instantiated without exception.

TestMethod_AirShoppingRQ_B_InitialState This test asserts that the initial state of the JMT class
Jmt.IATA.NDC.V2014.Shopping.Element.AirShoppingRQ is as
expected.

TestMethod_AirShoppingRQ_C_Populate This test asserts that the JMT class
Jmt.IATA.NDC.V2014.Shopping.Element.AirShoppingRQ can be
populated with its mandatory data without error or exception.

TestMethod_AirShoppingRQ_D_Serialise This test asserts that the JMT class
Jmt.IATA.NDC.V2014.Shopping.Element.AirShoppingRQ can be
serialised correctly, in this case to a file.

We will now look at the details of each of these tests.

AirShoppingRQ_A_Instantiate
This test, shown in the figure below (Figure 6), ensures that the type AirShoppingRQ can be instantiated.
Here, the full name of the JMT is shown “Jmt.IATA.NDC.V2014.Shopping.Element.AirShoppingRQ”. This referencing of
types follows a standard structure within libraries generated by the JMT Processor.

Figure 6 AirShoppingRQ_A_Instantiate Test Method

In particular the elements of the type namespace have the following significance:

Item Description

IATA Within JMT libraries this component is referred to as the Provider Name

NDC Within JMT libraries this component is referred to as the Provider Ident

V2014 Within JMT libraries this component is referred to as the Provider Version

Element This component is added where the underlying Schema entity of the type is a element

Figure 6 shows how straightforward it is to use JMT types, they operate as any other type in the C#/.Net compendium of
types. Once instantiated the type representing the message AirShoppingRQ, can be used just like any other object by the
developer. In particular, for this type there are the following Properties and Methods:

Entity Name (type) Type (* - Jmt.IATA.NDC.V2014.Shopping) Comment
Documentation
(Property)

String Returns the documentation assigned to the type
by the Schema writer

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 6

AirShoppingRQSeq
(Property)

GuardedList<AirShoppingRQSeqType_> Returns the list of sequence entities that exist with
AirShoppingRQ. The returned list is a Generic one
where the specific type is defined in an inner
(nested) class to AirShoppingRQ

PayloadStdAttributes
(Property)

*.AttributeGroup.PayloadStdAttributesType Returns the AttributeGroup representing the
PayloadStdAttributes as defined in
CommonTypes.xsd

BrandedFareSupport
(Property)

ChoiceType Use this to set or get the object whose type is
defined in CommonTypes.xsd

BrandedFareSupportField
Specified
(Property)

bool Returns a flag indicating if the
BrandedFareSupport field in AirShoppingRQ has
been set (instantiated). (§) Initially, all optional
fields which are reference types, have the ‘value’
of null. This means that the overall memory
requirement of objects is kept to a minimum.
When the field is set, then this “tracker” boolean
gets set internally to true

QueryID
(Property)

*.Attribute.QueryIDType Use this to set or get the object whose type is
defined in CommonTypes.xsd

QueryIDFieldSpecified
(Property)

bool Returns a flag indicating if the QueryID field in
AirShoppingRQ has been set (instantiated). See
(§) above

WriteXml
(Method)

Void Serialises the AirShoppingRQ to XML given a
configured XmlWriter stream (parameter). Use
this when the class IS NOT inherited

SerializeToXml
(Method)

Void Serialise the AirShoppingRQ to XML given a
configured XmlWriter stream (parameter).Use
this when the class IS inherited

ReadXml
(Method)

Void Deserialise data from a specified XmlReader
stream (parameter) to an AirShoppingRQ object.
Use this when the class IS NOT inherited

DerializeFromXml Void Deserialise data from a specified XmlReader
stream (parameter) to an AirShoppingRQ object.
Use this when the class IS inherited

==
(Operator)

bool This operator permits boolean comparison
between two AirShoppingRQ objects

!=
(Operator)

bool This operator permits boolean comparison
between two AirShoppingRQ objects

Equals
(Method)

bool This operator permits comparison between two
AirShoppingRQ objects

Clone
(Method)

object This method performs a deep clone of an
AirShoppingRQ object

ToString
(Method)

string This method provides a string represenation of an
AirShoppingRQ object

AirShoppingRQSeqType_
(inner class)

- This inner class represents the collection of
objects comprising the sequence within the
AirShoppingRQ entity

BrandedFareSupportType
_

- This inner class represents the locally defined
Attribute based upon the type ChoiceType
defined in CommonTypes.xsd

From the above table it should be clear how well provisioned the types from JMT are in comparison with those produced
by current tooling approaches. This remarkable contrast can be further judged when we look at the types associated with
the properties and collections above. Current tooling would attenuate these types into basic .Net types for example. In
JMT types all definitional structures expressed in the Schema are transformed, local definitions, wherever they occur,
become inner (local) classes, thus reflecting the Schema itself.
At first sight, the (full) names of JMT types, Properties and Methods can seem to be long and unwieldy. In practice, the
developer will find that auto-completion removes the need for typing, an example is shown below:

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 7

Figure 7 Auto-Completion & Documentation

AirShoppingRQ_B_InitialState
In this test the class, AirShoppingRQ, is instantiated, then the initial state of the class is asserted.

Figure 8 (a) AirShoppingRQ_B_InitialState Test Method

In above Figure 8 we see how, after instantiating the basic object, we assert that the Property AirShoppingRQSeq, which
returns the inner collection representing the sequence expressed in the source Schema, is not null. In addition, we test its
min- and maxOccurs and its (defaulted) collection item count. We also test for the basic state of the returned object from
the property BrandedFareSupport as well as asserting, since it’s optional, the state of its tracker field,
BrandedFareSupportFieldSpecified. We test that the Documentation string is returned non-empty.
Since the PayloadStdAttributes entity in the Schema definition is mandatory, we assert that the corresponding property in
the JMT type returns non-null. In contrast, for the QueryID property, we asset that the tracker field is false and that the
corresponding property returns null.

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 8

Figure 9 (b) AirShoppingRQ_B_InitialState Test Method

In this section of the “initial state” test, we look at the individual entities within the sequence as defined in the Schema and
reflected in the AirShoppingRQ inner type AirShoppingRQSeqType_ (note: all inner types of classes are signaled by having
names that end in the “_” character).
As a first step, since the minOccurs of the sequence is 1 and a single item will have been inserted in the collection as part of
the overall instantiation process, we retrieve the first item from the collection and validate the state of its properties.
We then ensure that the SaleInfo Property returns non-null as the SaleInfo entity in the Schema is defined as mandatory.
We then proceed to validate the state of the remaining objects returned from the Properties of the sequence
NbrOfAlternates, ShoppingResponseIDs, TravelerCount, QualifierGroup, ServiceFilter, OriginDestination, AttributeData,
AffinityData, PricingInfo and ReferenceDefinitions. These assertions are shown in Figure 10 and Figure 11

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 9

Figure 10 (c) AirShoppingRQ_B_InitialState Test Method

Figure 11 (d) AirShoppingRQ_B_InitialState Test Method

From the foregoing, it should be clear that the JMT types have full fidelity with the definitions expressed in the source
Schema. To be sure, we see particularly collection types that are specific to the programming world of C#/.Net but this is
to be expected. That we have access to these collections in a natural way from the developer standpoint is key.

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 10

AirShoppingRQ_C_Populate
Once we have asserted the initial state of our AirShoppingRQ type, then it’s natural to then assert that the populating of
the type proceeds as expected. In such a ‘test’ we perhaps are not so much interested in the ‘value’ of things but the
usability of types and the overall type structure. With this in mind, let’s take a look at the ‘populate’ test.
As a pattern when ‘populate’ testing of JMT types, we break out the individual entities and handle them in private
methods, these can be clearly seen in Figure 12, below:

Figure 12 (a) AirShoppingRQ Populate Test Method

We start by retrieving the (single) existing item in the sequence collection within AirShoppingRQ (this sequence collection,
by default, will have an existing typed item added). After asserting that this retrieved item is non-null we proceed to call
the methods that populate it, PopulateAirShoppingRQSeqItem, and then populate the PayloadStdAttributes entity,
PopulatePayloadStdAttributes.

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 11

Figure 13 PopulateAirShoppingRQSeqItem Method

In the code fragment we can see that the individual fields, like CountryCode, are getting assigned ‘valid’ values. In this
specific case CountryCode is formed from a SimpleType extension in the Schema and this is reflected in the Property name
that is used to access the final value, ‘Text’, SimpleTypeExtension. It is important to note how the ‘valid’ values where
discovered at this point in the testing workflow. In fact the information is provided, in this case, by the helpful Schema
author; see Figure 14 for how CountryCode was assigned simple a valid value.

Figure 14 Assigning Valid Values – Documentation

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 12

Hovering over the Property name to which the value will be assigned, shows us just what the Schema designer wanted to
tell us about the data definition and what would constitute a valid value. In this case we simply take what we are shown as
the value, “NEW YORK CITY”.

Figure 15 PopulateAirShoppingRQSeqItem Method

The remaining part of the method is concerned with the RequestorInfo and TravelerCount data setting and, again, we
make use of the Schema documentation shown to us via Intellisense to decide on valid values.
In the case where we populate the PayloadStdAttributes object, the method is as shown below:

Figure 16 PopulatePayloadStdAttributes Method

The main thing to note in this method is that the try/catch approach to handling the setting of invalid values is
demonstrated. In fact, none of the values we show here are invalid, so the exception that is built into JMT SimpleTypes for
invalid value alerting, is actually thrown. Another noteworthy feature of this test, is the timestamp value we use, matching
exactly the W3C format for an XSD DateTime type.

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 13

AirShoppingRQ_D_Serialise
Once we have an object instantiated and populated, we can test how it is serialized to XML, this we do as shown below,
Figure 17 :

Figure 17 AirShoppingRQ Serialise Test Method

The main part is as we saw for the populate test, it’s just the last method call that does the work of getting the object to
serialize. This method is as shown below:

Figure 18 SerialiseAirCheckInType Method

http://www.jet-messaging.com/

www.jet-messaging.com Accelerating development for NDC/Airline Shopping 14

As in the populate test, it can be seen that we don’t really ‘test’ here as we simply use .Net calls to set up an XmlWriter
stream and call the WriteXml method of the AirShoppingRQ object. This call results in the following file being produced:

Figure 19 Serialisation output (data.xml)

Summary
What have we achieved at this point?
We have demonstrated in a real-world NDC/Airline Shopping type definition, how JMT types are used by a developer. In
particular, the following should be noted:

 how easy it is to link the development environment to the JMT type library

 the fluent structure of referencing type structure in JMT types and how they reflect fully the Schema structure

 the way in which the developer gets actual Schema documentation at the time of writing code

 how code completion plays a key role in writing code involving JMT types

 how serialization is reduced to a simple method call

In practice the workflow of a travel application involves an orchestration of message sending as well as taking appropriate
action based on received information. Using JMT types in such a scenario would dramatically speed development and since
the full type landscape is provided, the full range of possibilities can be handled. More focus can be placed on this
workflow/business aspect that has hitherto been possible. This must, in itself, improve the project outcome as well as the
fulfillment of the project developers working with Schema- based type definitions.

© 07/2014 Jet Messaging Technologies AG

All rights reserved.

Jet Messaging Technologies AG

Rotwandstrasse 35, 8004 Zurich,

Switzerland

Phone +41 79 303 05 63

Email info@jet-messaging.com

http://www.jet-messaging.com/

